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Thesis Overview 

This document presents an argument for the value of well-developed and validated composite 

indicators in agricultural software and their potential to promote conservation through 

informed on-farm decision making.  

 

Chapter 1 discusses the motivation for composite indicators in the age of computerized 

agriculture. I examine ecosystem services in agriculture and how they are used to promote 

conservation practices through regulations and subsidies. In this age of rapid agricultural 

computerization, composite indicators provide an essential tool for integrating economic and 

environmental variables in the farm management process and allow for a better understanding 

of the relationship between farm systems and ecosystem services. Composite indicators 

provide farmers with farm-specific metrics that help them make informed decisions and aid in 

complying with regulations and qualifying for government payments for ecosystem services. I 

give an overview of composite indicators and discuss their necessity in the development and 

application of complex farm system models that could someday be integrated with precision 

agriculture and variable rate technology.  

 

Chapter 2 provides three examples of widely used composite indicators: Milk per Acre, the 

Phosphorus Index, and the Revised Universal Soil Loss Equation, Version 2 (RUSLE2) and briefly 

discusses their development and use.  
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Chapter 3 demonstrates a current working example of the coordinated use of composite 

indicators through software. Three popular agricultural composite indicators are used to assess 

site-specific benefits of winter rye cover crops in a corn silage system.   

 

Chapter 4 concludes that continued efforts by academia must be made to keep agricultural 

composite indicators valid and relevant in the age of agricultural computerization to ensure the 

continued consideration of environmental externalities in on-farm decision making.  
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Chapter 1. Motivation for Composite Indicators in Modern Farm Management 

Introduction 

Agriculture accounts for roughly half of the land use in the United States (USDA 2012), making it 

one of the primary ways we interact with the environment. The negative environmental 

externalities of agriculture are substantial, including nutrient and sediment loading into surface 

waters leading to coastal hypoxic zones, greenhouse gas emissions from soils, livestock, and 

machinery operations contributing to anthropogenic climate change, and leached pesticides 

and fertilizers contaminating ground waters (Diaz and Rosenberg 2008, IPCC 1996, Cohen et al 

1984). The high level of interdependency between agricultural systems and the environment 

implicates farm management as environmental management.  

 

Farm management presents tradeoffs between the potential outcomes of many decisions. The 

economic and environmental value gained or lost from agricultural practices can be understood 

in terms of ecosystem services, some of which can be monetized. However, when 

environmental effects are involved, the expected outcomes are often non-marketable and not 

easily comparable. Environmental tradeoffs are then oversimplified due to countless unknown 

variables. In these situations, concise metrics that inform farmers about the effects of their 

decisions can prove useful. As farmers become familiar with such metrics they will be better 

able to understand the overall balance of marketable and non-marketable ecosystem services 

produced on their farms.  
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Advancements in agricultural research and technology have allowed substantial progress in 

both improved productivity, as well as reduced negative externalities (Tilman et al. 2002). 

Technological advancements are central to the efforts of research in sustainable agriculture, 

specifically technologies that help to conserve ecosystem services and improve environmental 

conditions while maintaining farm profitability. These technologies often increase the 

complexity and demand of farm management. Highly integrated methods of farm management 

will become imperative for agricultural production to move towards a more sustainable 

agroecosystem that is both sufficiently productive and free of unaddressed negative 

externalities.  

 

Farm Management Information Systems (FMIS), software developed to aid on-farm 

management decisions, has emerged as a result of the increased complexities of farm 

management. Constant innovation in agriculture presents farmers with an increasing set of 

management decisions at every stage of the production system. Compounded by the significant 

influence of a largely uncertain environment and the undeterminable interaction effects of the 

decision variables, the farmer’s process of making the best collection of choices for achieving 

their objectives proves daunting and often impossible. Public and private development of FMIS 

is accelerating in response as a possible solution to the need for more comprehensive 

management of these increasingly complex systems.  

 

Farm profitability will predictably be the primary objective of FMIS. Efficiency of production will 

be a direct consequence of this objective, but environmental conservation is not an inevitable 
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result. Rather, indicators of environmental quality must be a deliberate consideration of FMIS 

development.  

 

Thus, we find agricultural innovation at the confluence of two major developments that will 

provide us with a crucial opportunity to revolutionize how we produce food, fuel, and fiber. 

Improved understanding of the interactions between agriculture and the environment through 

composite indicators integrated into FMIS that are able to utilize a variety of data streams of 

controlled and uncontrolled variables affords us a unique prospect of transitioning towards a 

more sustainable agriculture. The purpose of this paper is to: (1) identify the need for 

composite indicators in modern farm management to address externalities of farming, (2) show 

that combining several composite indicators can provide a comprehensive understanding of the 

economic and environmental consequences of farm management decisions, and (3) to provide 

an example of using a combination of composite indicators to test the hypothesis that adding 

winter cover crops to a common cropping system in Wisconsin can reduce environmental 

externalities without increased risk of lost profits.  

 

Ecosystem Services 

Humans rely entirely on ecosystem services for their survival and wellbeing. Historically, we 

have largely taken these services for granted, but due to the finiteness of the planet and a 

growing population with growing resource demands, a firm understanding of anthropogenic 

impacts on the environment is essential to the sustainability of humanity. The United Nations 

commissioned an assessment of these impacts at the turn of the millennia – the Millennium 
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Ecosystem Assessment. This assessment represents a joint effort among a majority of the 

world’s nations to understand and respond to the anthropogenic degradation of our 

ecosystems. It represents a consensus of the world population that efforts must be made to 

counter this degradation in consideration of sustainability and future generations. The 

assessment included the report “Ecosystems and Human Well-Being: Synthesis” which defines 

ecosystem services as “the benefits people obtain from ecosystems” (Millennium Ecosystem 

Assessment 2005). Although this definition is broad, it highlights the breadth of these services 

and motivates attention to the fact that at some level the entirety of human utility, welfare, 

and existence relies on ecosystem services.  

 

Ecosystem Service Valuation and Policy 

A folly of humanity is to view ourselves outside or above our environment. Our entire 

existence, as with all life, is a dynamic and integrated ecosystem. We found ways to 

substantially improve the human condition in the last two centuries, but these improvements 

come at the cost of substantial changes to the ecosystem we rely on. Recently, we are 

beginning to recognize and appreciate that these changes, over time, may be damaging to 

human well-being. Humans must address ecosystem changes and understand the trade-offs of 

our choices. This process will require a highly informed valuation of ecosystem services and a 

mindful consideration of those services that are not directly valuable.  

 

Understanding the effects of human activity on ecosystems has proven difficult. Methods of 

preemptively determining these effects are deficient (Costanza et al. 1997, Costanza et al. 
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2014). Consequently, assessment of these effects has been primarily retrospective and often 

only in response to highly consequential events that are far removed from the activity that 

caused them. For example, the significance of nutrient loading in the Mississippi River 

watershed has only been fully considered in response to the large hypoxic zone in the Gulf of 

Mexico and its ramifications on fisheries (Rabotyagov et al. 2014). 

 

The ability to incorporate the externalities affecting ecosystem services through valuation will, 

on its own, likely be insufficient to change production practices for marketable goods. This 

effort inevitably necessitates well informed policies and institutions that can guide and regulate 

these processes. There are examples of this throughout US history. The National Environmental 

Policy Act of 1969 started the Environmental Protection Agency and lead to widespread 

assessment of human driven effects on the environment. The Soil Conservation and Domestic 

Allotment Act of 1935 created of the Soil Conservation Service (subsequently renamed the 

Natural Resource Conservation Service), which currently administers the Conservation Title of 

the Farm Bill, funding programs to aid farmers in conservation practices. To this end, methods 

of understanding and addressing the effects of policies and the industry practices they 

influence need functional methods of evaluating the ecosystem services that are impacted.  

 

Valuation of Ecosystem Services 

The value humans derive from ecosystems can be categorized in many ways. One important 

distinction is whether the service is directly marketable. While this division is not an indication 

of the level of value humans gain from the service, it is historically the primary determinant of 
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the effort humans are willing to make to conserve the service. Consequently, the focus on 

conserving a marketable ecosystem service often comes at the cost of degrading another, more 

indispensable, non-marketable service. Continuing with the prior example, in agriculture we 

work to conserve the productivity of farmland through fertilization at the expense of affecting 

ground and surface water quality. More generally, we are presented with trade-offs but often 

do not include the full ramifications of our choices in the decision-making process.   

 

The Millennium Ecosystem Assessment divides ecosystem services into four categories: 

provisioning services, regulating services, cultural services, and supporting services (Millennium 

Ecosystem Assessment 2005). Much of the directly marketable services are categorized under 

provisioning services, which encompasses natural capital, but humans receive value from each 

type of ecosystem service. From the esthetics of natural surroundings to the natural filtration of 

our water systems, ecosystem services are essential to human existence.  The notion that an 

ecosystem service only has value as long as it can be capitalized has proven flawed, and 

significant effort must be made to advocate for the functionality of the environment as a 

whole.  

 

The widespread effort to incorporate environmental valuation into economic analysis has come 

under a sharp, yet justified, critique. These concerns must be central considerations in the 

valuation process to ensure that humans are not deluded in believing we have somehow solved 

the issue of sustainability. There is concern that economic rationale will become the sole driver 

of conservation, and equally-important noneconomic reasoning will lose its intrinsic merit 
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(Matulis 2014). Equally as problematic is a feature inherent to ecosystem services as I have 

defined them, that if an aspect of the environment does not evidently benefit humans, then it is 

not worth conservation (Redford and Adams 2009). In many cases, rather than being beneficial, 

essential ecosystem processes are directly detrimental to humans, for example, wild fires or 

floods. The converse of this is also true, that just because an ecosystem service gives benefit to 

humans does not mean it is natural or beneficial to the environment, such as the increased 

clarity of Midwestern lakes due to the invasive introduction of zebra mussels (Redford and 

Adams 2009). 

 

In the attempt to better understand the environment and give value to ecosystem services, 

additional apprehension surrounds a trajectory of increased human control over these services. 

This control could lead to engineered ecosystems, market dependent decisions for 

conservation, conflict over control of ecosystem services, or fixation on the status quo of 

ecosystem services despite drastic changes due to a changing climate (Redford and Adams 

2009). As we begin to recognize the full magnitude of ecosystem services and their roll in not 

only our economy and welfare, but our existence, the equitable distribution of benefits from 

ecosystem services must also be a central consideration (Cobrera 2014). This distribution will be 

hindered by the prevailing imbalance of power to control allocation of, access to utilize, and 

ability to influence the markets of ecosystem services (Matulis 2015). 
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Ecosystem Services and Agriculture 

Agriculture dominates the landscape at the interface between humans and the rest of the 

environment. Consequently, agriculture is not only highly dependent on ecosystem services, 

but maintenance of ecosystem services is also highly dependent on agricultural practices 

(Tilman et al. 2002). This relationship is a feedback loop where agroecosystems that promote 

conservation of ecosystem services will benefit from those sustained ecosystem services. 

Conversely, agriculture will suffer from practices that degrade ecosystem services. Many 

instances of this relationship have been observed such as improved yields and pest suppression 

due to diversified crop rotations (Berzsenyi et al 2000).  

 

To this end, we must begin to consider the agroecosystem as a whole, where field-level 

decisions are made in consideration of the effects at the landscape level and beyond. A greater 

understanding of how farm operations cultivate both marketable and nonmarketable 

ecosystem services is needed. More specifically, agriculture, as with any natural capital, is 

thought to be a provisioning service as it provides food, fuel, and fiber. Moving towards a 

sustainable agroecosystem will be driven by an expanded consideration of the regulating, 

supporting, and cultural services that are affected as well (Swinton et al. 2007). In this sense, 

farmers are the stewards of many of the landscape’s ecosystem services that deliver value 

whether or not that value can be harvested.  

 

Currently commodity support policies reward maximizing production, especially in the presence 

of small or negative profit margins. As policy changes due to concerns of anthropogenic climate 
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change, conserving ecosystem services will become one of the primary objectives of 

agriculture, but this does not necessitate a loss in productivity.  For example, in a 

comprehensive review of literature comparing diversified to conventional farming systems, 

Kremen and Miles (2014) found that the diversification of farming systems is essential to 

improving ecosystem services, and it need not result losses to productivity. They further 

suggest that this perception of lost productivity in diversified systems stems from a lack of 

funding for agroecological research and posit a need for increased research of integrated 

whole-system studies to better understand the interactions between farming practices and 

ecosystem components and services.  

 

Policies Promoting Ecosystem Services in Agriculture 

Many types of policies have been employed in the United States to promote conservation of 

ecosystem services in agriculture, both federally and at the state level.  Broadly, these can be 

categorized as regulations and conservation programs. Often the two categories are linked, 

where conservation programs are administered to aid farmers in meeting regulation criteria or 

regulation criteria must be met to receive government transfers.  

 

There are several varieties of conservation programs including direct payments for ecosystem 

services, information dissemination through conservation support programs, as well as 

mandatory monitoring of agricultural practices associated with negative environmental 

externalities. At the federal level, support for ecosystem services are primarily provided 

through conservation programs administered by the USDA.  The motivation for these programs 
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is to provide financial incentives for conservation promoting practices that reduce onsite and 

offsite environmental impacts. These incentives may be necessary to mitigate perceived losses 

to productivity due to the adoption of the practice or to overcome the initial investment costs 

of implementing the practice.  

 

Agricultural conservation programs provided by the USDA are authorized under Title II, The 

Conservation Title, of the Farm Bill. These programs are grouped by similarities as working land 

programs, land retirement programs, easement programs, partnership programs, conservation 

compliance, and other overarching provisions. Many of the programs receive mandatory 

funding which accounted for $58 billion, or roughly 6%, of the total ten-year mandatory funding 

authorized under the 2014 Farm Bill, The Agricultural Act of 2014. Every year since 2010, 

conservation spending has been between 5 and 6 billion dollars (USDA 2019).  

 

Many of the programs authorized under the Conservation Title of the Farm Bill are aimed at 

removing environmentally sensitive lands from production. These programs play an important 

role in shaping a sustainable agroecosystem landscape. However, there has been a shift in 

funding towards working land payments since their introduction in 2006 in part due to 

improvements in production technology, high commodity prices, and variability in land rents 

(USDA 2019). While commodity prices have fallen in recent years, conservation-oriented 

production technologies continue to improve, and working land payments have become the 

predominant form of conservation related government transfers to farmers, accounting for 

over 50 percent of conservation payments since 2014 (USDA 2019). Ultimately a dynamic 
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balance of land retirement and working land programs will be ideal, and the best solution may 

require a farm-specific, variable combination of these two types of aid.  

 

Several working land programs work to promote sustainable agroecosystems by directly 

influencing the productive practices of farmers. Included in this category are the Environmental 

Quality Incentives Program (EQIP) which provides technical and financial assistance to design 

and implement new conservation plans, the Conservation Stewardship Program (CSP) which 

provides technical and financial assistance to improve upon existing conservation practices, and 

Agricultural Management Assistance (AMA) which provides technical and financial assistance to 

address specific on-farm environmental concerns (USDA 2019). 

 

Increasing interest in addressing locally specific environmental concerns has led to the 

authorization of Regional Conservation Partnership Programs (RCPPs). These programs, 

involving plans tailored specifically to a geographic region, receive some mandatory funding 

under the Farm Bill, as well as redirecting a portion of funding from working land and easement 

programs. RCPPs also have the ability to leverage local and state funding to match federal 

contributions and address specific environmental concerns in well integrated and coordinated 

efforts (USDA 2019). 

 

Conservation compliance as a condition for government transfers represent an important 

feature of agricultural aid. Such requirements take on various forms at both the federal and 

state levels, and generally are directed at farms that fulfill a set of criteria. For example, at the 
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federal level compliance programs for highly erodible lands conservation and wetland 

conservation are authorized under the Agricultural Title of the Code of Federal Regulations with 

administration appropriations in the Conservation Title of the Farm Bill (USDA 2019).  

 

State level conservation policies and programs also play an important role in promoting 

conservation of ecosystem services, since localized initiatives have greater potential to address 

specific concerns of environmental degradation and loss of ecosystem services. As example in 

Wisconsin, several standards administered and enforced by the Wisconsin Department of 

Agriculture, Trade, and Consumer Protection and the Department (DATCP) of Natural Resources 

(NR) layout regulations to mitigate negative environmental externalities of agriculture. For 

example, ATCP 50 and NR 151 outline regulations to control nutrient and sediment loading into 

surface and ground waters. These regulations are recommended for all farmers and are 

requirements for farmers meeting specific criteria such as concentrated animal feeding 

operations. Additionally, requirements must be met to participate in state sponsored cost share 

programs or to receive tax credits such as through the Farmland Preservation Program.  

Compliance with the Nutrient Management 590 Code published by the USDA NRCS is a 

requirement of these state regulations, requiring farmers to annually complete a nutrient 

management plan. These requirements have great potential to reduce nutrient and sediment 

loading but come at the cost of increased management obligations for the farmer.  
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Farm Management Information Systems 

Farm System Complexity and Risk 

As farmers, researchers, crop consultants, and politicians continue to develop and implement 

agroecosystems that balance profitability with ecosystem service maintenance, farm systems 

will increase in complexity. The number of interacting decision variables and the planning 

horizon they span will extend, creating intricate problems that require advanced management 

systems. This increased complexity is driven both by increased consideration of the effects of 

management decisions and by an increased number of options for technologies that determine 

these effects (Pannell 1999). For example, the farmer’s choice of crop rotations has become a 

coordinated decision of utilizing beneficial cross year interactions between crops on individual 

fields and maintaining a diversified production in each year to exploit predicted market prices 

as well as alleviate environmental and financial risk. Farms such as dairies that utilize their 

produce on farm for feed have additional considerations in deciding how to manage rotations 

that best satisfy the needs of their herd while maintaining field health.  Intercropping has 

become an option that can further benefit soil health and ecosystem diversity but has 

implications for rotations, necessary machinery, and production levels. Seed treatments can 

prevent detrimental pest damage and improve germination rates, but are sold at a premium, 

adding costs with return on investment that is difficult to determine.  Precision agriculture has 

presented new options for fine tuning seeding, fertilizer, and pesticide rates with high levels of 

granularity and accuracy. Increased options for fertilizer application timing and location allows 

farmers to abate production limitations with unprecedented levels of specificity and efficiency. 
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However, coordinating all of these efforts and allocating labor and capital appropriately can be 

complicated.  

 

The increased complexity of highly integrated farming systems can present a deterrent to 

farmers looking to uptake new technologies. Evidenced by lagging technology adoption, 

farmers are often assumed to be risk averse, and although technology and crop diversification 

will generally mitigate risk (Harwood et al. 1999), the added complexity may be internalized by 

the farmer as added risk.  

 

There are many known sources of risk associated with farm systems: production risk such as 

variable yield, market risk such as variable commodity pricing, institutional risk such as variation 

in insurance and government support, and financial risk such as variation in credit and access to 

capital (Harwood et al. 1999). A farmer’s reluctance to add to these risks is understandable. 

Although the farm is a production firm, in most cases it is also a household. Therefore, decision 

outcomes have personal effects. However, I believe that much of what researchers and 

consultants determine to be risk of technology adoption is actually internalized as uncertainty 

by the farmer. That is to say, a technology may prove beneficial most of the time in most 

places, but that doesn’t give concrete evidence to a farmer that it will be beneficial in their 

field.  This uncertainty results from a lack of trusted information available to the farmer about 

how the technology may specifically affect their system. While researchers attempt to abate 

this uncertainty through information dissemination and extension, empirically generated 

information will lack the farm specificity needed to assure farmers of a technology’s benefits.  
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This increased complexity has potential to maintain farm profits while increasing ecosystem 

service maintenance and decreasing unwanted externalities, but it comes at the cost of more 

involved and multifaced management requirements (Pannell 1999). Additionally, more complex 

systems present increased difficulty in determining the true relationships between farm 

management decisions and the resulting environmental and economic effects. This increased 

complexity demands well-informed management that is able to integrate more information 

into the management process and accurately anticipate outcomes of changes to practice and 

technology. Methods of providing farm-specific effects of management decisions could help 

alleviate the uncertainty and improve understanding of the risk in complex systems. Providing 

this information will require an integrated analysis of the farm attributes, all available 

applicable data streams, and the farmer’s preferences. Software to aid farm management must 

focus on the goal of providing farmers with sufficient information so that management 

decisions are truly based on objectives and risk, and not overly influenced by precieved 

uncertainty. 

 

On-Farm Internet and Computer Access 

The use of on-farm management software, referred to here as Farm Management Information 

Systems (FMIS), is quickly growing in response to the increased complexity of farm 

management in conjunction with increased rural access to internet services and the decreased 

cost of computers and smart phones. Although many farmers still lack interest in using digital 

resources in their farm management, as the demographics of farmers shift with an aging farmer 
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population, we will see younger, more-educated farmers embrace these resources, a trend 

documented by Shutske et al. (2018) in a survey of digital technology use by Wisconsin farmers. 

Based on these trends, the agricultural landscape of the near future is expected to be a highly 

integrated production system with numerous information sources providing environmental and 

economic indicators, regulation and payment program guidelines, and research on best 

management practices, all interacting in a farm-specific system analysis and playing a 

substantial role in daily farm management decisions (Sorensen et al. 2010). These technologies 

also present the potential of interactive planning and innovation at levels higher than the 

individual farm, where crop choices can be made based on regional or national cropping rates 

and commodity demands; and environmental conservation and pest prevention can be locally 

and regionally coordinated to prevent devastating externalities and outbreaks while reducing 

input costs (Antle et al. 2017).  

 

Software and Agriculture 

With an increase in the complexity of farming systems, the need for well-developed, 

opportune, decision-making support using diverse and dynamic data streams has accelerated. 

Options for FMIS have proliferated in response to this need. Early examples of FMIS focused on 

record keeping and basic information access such as weather and soil data, and they have since 

advanced to include a diverse set of data streams and recommendations such as market 

information, application recommendations and regulations, statutory compliance, satellite 

imagery, and on-site sensory information (Fountas et al. 2015). This integration of real-time and 

historical data will continue to expand, creating a dynamic management system that motivates 
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and responds to current management decisions and focuses on usability and human-computer 

interaction (Fountas et al. 2015).  

 

Motivation for farmers to use FMIS will depend on a variety of factors. Primary features that 

are likely to drive uptake of FMIS include usability, cost-effectiveness, applicability, and 

compatibility with regulations (Rose et al. 2016).  As a digital technology, FMIS have potential 

for diversified revenue streams, alleviating the initial uptake cost to farmers and encouraging 

their use. Privately developed FMIS will capture market surplus through user discrimination 

with tiered software, which will allow for gradual uptake and incorporation into farm 

management. Since the needs and preferences of every farmer are different, a dynamic 

marketplace of FMIS will allow farmers to integrate systems that meet their needs (Kaloxylos et 

al. 2014). 

 

The functionality of FMIS is expanding in conjunction with several other technologies that 

facilitate access to geographically and temporally relevant data. As data access improves, farm 

system models at the farm and landscape level are being developed to improve data 

incorporation into the farm management process (Capalbo et al. 2017).  Web-based systems 

with mobile platforms allow farmers to access and input information throughout their farm, 

and precision agriculture technology using timely satellite and drone imagery along with tractor 

mounted sensors provide farmers with up-to-date measurements allowing for opportune 

decisions and spatially varying input recommendations (Paraforos et al. 2016, Nikkila et al. 

2010).  As agricultural technology continues to evolve, reliable tools for holistic management 
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will prove essential. FMIS offers an opportunity to integrate economic and environmental 

sustainability, but this combination of diverse data will rely on well-developed indicators to 

provide usable information to the farmer (Capalbo et al. 2017).   

 

Indicators for On-farm Use 

Indicators used in farm level decision making have potential to improve sustainability by 

incorporating environmental externalities into economic decision making. The use of 

sustainability indicators for reducing negative externalities and fostering positive externalities 

in agriculture should be at the forefront of agricultural developments. Indicators are becoming 

popular in agricultural research, and while they have been embraced in various regions and 

types of farms, they have not become standard agricultural practice (Van der Werf and Petit 

2002). 

 

Indicators can prove useful in understanding sustainability at the farm level (Rigby et al. 2001). 

Farm-level indicators can help us understand the mechanisms of sustainability and can drive 

the discussion of sustainability from a theory-based understanding to one that is 

methodological. Additionally, indicators improve our understanding of the role of scientific 

measurement in decision making, both for farmers and policy makers (Dale and Polasky 2007). 

It is necessary to develop logical and useful farm-level indicators in order to improve and 

implement our understanding of sustainability (Rigby et al. 2001). 
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The process of deciding which indicators to use and how those indicators should be constructed 

is of primary concern. Indicators can be direct measurements, but since monitoring and 

measuring the variable of interest is often problematic, indicators are typically latent metrics 

estimated from other direct measurements that encapsulate the characteristics of the desired 

indicator (Gómez-Limón and Sanchez-Fernandez 2010). The accuracy of estimators as proxies 

for latent variables is generally a tradeoff with their components’ ease of measurement.  

 

Base indicators, those collected directly from the system of interest, can provide useful data to 

recognize the effects of agriculture on the encompassing ecosystem. Examples include 

ecological indicators of farming effects and farming practice decisions (Dale and Polasky 2007) 

such as nitrate levels in the soil or percent field cover in the spring. From base indicators, 

composite indicators can be developed to help simplify their interpretation and mechanize 

their usefulness (Gómez-Limón and Sanchez-Fernandez 2010). Composite indicators allow for 

the user to consider a wide range of externalities without the loss of the underlying 

information.  

 

Base Indicators 

Base indicators, or more specifically ecological indicators, can help farmers understand the 

interaction of their agricultural system with the encompassing ecosystem. Dale and Polasky 

(2007) provide a framework for interpreting ecological indicators and layout criteria for the 

identification and selection of indicators that satisfactorily metricize the complex interactions 

within the system. They suggest three types of ecological indicators categorized by the manner 
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of ecological feature meant to be estimated: structure, composition, and function. Additionally, 

they propose three scales at which they can be observed: landscape, ecosystem, and 

population. The criteria they outline provide guidance for deciding from which category and at 

which scale to choose appropriate and useful ecological indicators. These criteria can be 

generalized to all indicators. 

 

Base Indicator Selection 

Dale and Polasky (2007) list seven criteria for the selection of indicators. The first is that an 

indicator should “be easily measured.” This is important to both minimize cost and increase the 

frequency of data collection. Considerations for this criteria include what equipment is needed 

to measure the indicator and whether it can be measured remotely. The next criteria proposed 

are that indicators “be sensitive to changes in the system,” “respond to change in a predictable 

manner,” and “be anticipatory.” Indicators must be dynamic and responsive to changes in the 

system in order to properly understand the farming effects on the system, and they must be 

predictive of these effects to be useful in deterring adverse externalities. Dale and Polasky 

(2007) aptly add the criterion that indicators “predict changes that can be averted by 

management actions.”  If the information received from the indicators cannot be used to effect 

change, then they do not have value in practice. Finally, they suggest the criteria that indicators 

“are integrative” and “have known variability in response.” These last two criteria ensure that 

the indicator data lead to pertinent actions at the appropriate scale.  Dale and Polasky (2007) 

focus on indicators that can be directly measured, but the criteria they present are helpful in 
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considering what information should be collected when developing composite indicators and 

how composite indicators should be constructed to have the desired effect. 

 

Composite Indicators 

Composite indicators have great potential to monitor countless variables with just a few key 

metrics. However, their benefit comes with significant risk. Developing composite indicators 

must be a mindful and dynamic process. Gómez-Limón and Sanchez-Fernandez (2010) outline 

some key advantages and disadvantages of composite indicators. By reducing the set of 

indicators that the farmer has to consider, composite indicators make it easier to understand 

and monitor complex, multivariate systems and to observe their progress or deficits without 

losing the original observed data. Composite indicators provide a good tool for making 

comparisons at the farm, region, and country level. This comparison allows for realization at 

each of these levels of potential areas for improvement and helps place the onus for deficits in 

the achievement of sustainability benchmarks.  Additionally, it encourages communication 

between farmers, consumers, and other stakeholders, which further adds to accountability at 

the various monitored levels (Gómez-Limón and Sanchez-Fernandez 2010).   

 

Composite indicators have apparent potential value, but they must be developed and utilized 

with great care. If composite indicators are inadequately developed or misconstrued, they 

could draw false inferences or lead to poor policies. Composite indicators run the risk of being 

overly arbitrary and lead to debates about their appropriate interpretation and 

implementation. Additionally, poorly constructed composite indicators could lead to excessively 
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focusing on one issue and overlooking other problems as a result, a problem which composite 

indicators also provide great potential to avoid.  

 

Composite Indicator Construction 

A variety of methods for constructing composite indicators from base indicators are potentially 

useful in practice. Gómez-Limón and Sanchez-Fernandez (2010) outline the basic premise that is 

common to many of these methods. As discussed previously, the base indicators must be 

selected, and the data gathered.  The collected data need to be normalized to make them 

operational, which involves making the values unitless through a demeaning process and allows 

originally incomparable data to be aggregated. The normalized data are then weighted, which is 

the step where the concepts of sustainability are incorporated into the composite indicator’s 

creation. Variables that are considered to diminish sustainability will be negatively weighted 

while those that are deemed to improve sustainability will be positively weighted. Ultimately, 

this step can be arbitrary and should be well-founded in evidence-based research to reduce this 

subjectivity.  Finally, the data are aggregated into a composite indicator. This step must 

consider the possibility for incommensurable data and that multiple composite indicators 

should be used. In each step, Gómez-Limón and Sanchez-Fernandez (2010) advocate for 

accuracy and transparency. Throughout an indicator’s use, each of these steps should be 

revisited frequently and updated as the science evolves.  
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Indicators of Effects and Indicators of Practice 

Several considerations must be made when choosing base indicators and developing composite 

indicators. Van der Werf and Petit (2002) analyze twelve sustainability indicators and their 

methods of construction. The important considerations they deliberate are the tradeoff of the 

ease of data gathering with the complexity of the indicator, the concerns of the agroecosystem 

that need to be addressed, the most apt indicators to measure these concerns, whether the 

indicators are of practices or effects, and how to evaluate the effectiveness of the indicators. I 

will focus on their assessment of indicators of practice versus indicators of effects.  

 

Indicators of practice are data on the decisions and operations of the farm. Examples include 

the percent cover left on the field at harvest or the tillage methods and depth. They prove to be 

much more common than indicators of effects. They are much easier to collect and 

consequently prove to be much cheaper. They can be collected in hindsight and can thus 

provide larger data sets for researchers. However, practice-based indicators do not provide 

certain causal correlation to ecosystem effects, and thus preferred changes in practice to 

correct for externalities are not always obvious. In the indicators assessed by Van der Werf and 

Petit (2002), those that were practice based were generally presented as values and without 

thresholds, which leads to ambiguity that may reduce appropriate responses by farmers.  

 

Indicators of effects are data on the surrounding ecosystem.  Examples include nitrate levels in 

the soil or point runoff rates for a field. These indictors often prove difficult and costly to 

collect. Consequently, the amount of data collected is often insufficient and inconclusive. As a 
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benefit, relating these indicators to the concerns of environmental effects proves more 

transparent. Van der Werf and Petit (2002) found that indicators of effects are often presented 

with a threshold which gives a goal for changes in farming practices.  However, similar to 

practice-based indicators, a causal relationship to methods of farming may prove difficult, and 

lack of culpability of environmental problems to specific practices could prevent remediation. 

Ultimately, a combination of indicators of practice and indicators of effects may prove to be the 

most useful in driving a change in agriculture towards sustainability.  

 

Validation of Indicators 
 
A validation method is essential for indicators to adhere to scientific standards. Bockstaller and 

Girardin (2003) provide a three-part framework for the validation of indicators. The first step is 

validating that an indicator is scientific by design. Design validation involves presenting the 

method of construction to a group of experts in the given field for assessment and gathering 

feedback.  

 

The second step is to validate the reliability of the indicator’s output, which ideally would 

involve a comparison of the indicator estimate to measured data of the conditions the indicator 

is intended to approximate. One provided example is to produce an expected graphical area 

where the indicator predicts a measured variable to be, analogous to a multidimensional 

confidence interval, and determine how often the measured data adheres to this prediction. 

This confidence interval can be difficult to define when the indicator is predicting sustainability, 

difficult to realize given the temporal implications of sustainability, and possibly meaningless 
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given a unitless composite indicator. Furthermore, this validation requires measurement of the 

exact variables that are difficult to measure and need an indicator as a proxy. As an alternative 

Bockstaller and Girardin (2003) once again suggest a panel of experts to assess the validity of 

the output. 

 

The last step for validation proposed by Bockstaller and Girardin (2003) is to determine the 

usefulness of the indicator in practice. This step is critical, for an indicator has no purpose if it is 

not used. They recommend that this evaluation can be accomplished with a survey of the users. 

This method seems appropriate and, in addition to validation, is essential to the development 

and maintenance of useful and dynamic indicators. Validating indicators must be a continuous 

process as the measurement and construction of indicators is itself continuous.  

 

Composite Indicators in Agricultural Software 

The usefulness of composite indicators for making on-farm decisions is facilitated by the uptake 

of software for aiding farm management. As this software uptake increases, composite 

indicators provide a way to implement concise methods of conveying the likely effects of 

management decisions. Already, vast amounts of data are available to farmers from sources 

such as satellites, drones, precision agriculture machinery, and on-farm sensors such as SPAD or 

NDVI.  As management software evolves, the data streams from these technologies will be 

utilized to provide farmers with comprehensive delineations of all the processes taking place on 

their farm. Composite indicators provide a way to incorporate many types of data into more 

easily interpreted metrics, which will allow farmers to relate aspects of their farm to the 
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surrounding environment that would not otherwise be easily comparable. For example, in 

determining the effect of adding winter cover crops to a field’s rotation, changes to outcomes 

will be seen in economic concerns such as productivity, profitability, and resource demands as 

well as environmental concerns such as runoff, nutrient loading, and soil health. Software that 

is able to analyze the expected outcomes and deliver concise metrics to inform the farmer can 

help them determine the best field specific management practice. 

 

Conclusion 

Humans rely on ecosystem services. Farm management is ecosystem management. In an effort 

to reduce negative externalities from agriculture and to improve sustainability, farmers need 

efficient and effective methods of analyzing the effect of their practices on ecosystem services 

for the integration of environmental externalities into on-farm decision making. The increasing 

uptake of computerized technologies by farmers and the improved understanding of 

agroecosystems provides a unique opportunity for this integration. Composite indicators are a 

necessary way to provide accessible and useful analysis and interpretation of environmental 

externalities in farm management. Chapter 2 reviews three composite indicators which are 

current working examples available to farmers, and Chapter 3 uses these indicators to illustrate 

the incorporation of potential environmental externalities into an on-farm decision process.  
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Chapter 2. Three Examples of Composite Indicators Used in Agriculture  

In this chapter I provide an overview of three composite indicators that have been incorporated 

into software and are used by Wisconsin farmers: Milk per Acre, the Phosphorus Index, and 

RUSLE2. All three are calculated from easily accessible data using free software, have gone 

through multiple revisions to remain consistent with the current research, and incorporate base 

indicators of effects and practice. Milk per Acre is retrospective and indicative of economic 

effects, and the other two are predictive and indicative of environmental externalities. 

Together, they provide a current working example of the potential for composite indicators to 

improve our understanding of how cropping decisions will affect profit as well as ecosystem 

services, and the tradeoffs being made with each decision. 

 

Milk per Acre 

The Milk per Acre metric was developed at the University of Wisconsin in an effort to provide a 

simple single metric that estimates milk produced per acre of forage (Undersander 1993). The 

measure combines forage quantity and quality to help compare forage production systems. 

Milk per Acre is a composite indicator of milk production at the field level that is easily 

measured and indicative of the effects of cropping decisions made on dairy farms. The accuracy 

of predicted Milk per Acre is variable, so the best use of the metric is for comparing various 

crops for a single herd. The metric should not be used to compare forage value across farms or 

herds. 
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The base indicators required for Milk per Acre include indicators of practice and indicators of 

effects. The indicators of practice include the type of forage and dairy attributes such as the size 

of the cows and the portion of the rations from forage. The indicators of effects include per 

area forage yield and forage analysis results with concentrations of dry matter, protein, fat, ash, 

starch, NDF, and ttNDFD. These base indicators are all easily accessible for a farmer and are 

generally already available through a dairy’s standard practices.  

 

The usefulness of Milk per Acre is evident in the consideration of cropping decisions for dairy 

farmers. Cropping decisions often present a tradeoff between forage quantity and quality, and 

both can affect profitability making it difficult to optimize. Additionally, forage pricing metrics 

such as Relative Feed Value (RFV) or Relative Forage Quality (RFQ) ignore important aspects 

that affect quality despite the recognized effect of these characteristics on feed rationing for 

milking cows.  That is to say, these metrics are based on levels of dry matter, digestible dry 

matter, or total digestible nutrients (TDN) in the forage, calculated from lab analyses of neutral 

detergent fiber (NDF), acid detergent fiber (ADF), and organic matter (OM). They do not, 

however, factor in protein and fat concentrations in the feed. The original Milk per Acre metric 

(Undersander 1993), as well as more recent revisions. used equations developed by the 

National Research Council (NRC 1978, NRC 2001). The NRC publication on the nutrition 

requirements for cattle is central to the improved predictive capabilities of the Milk per Acre 

metric (Undersander 1993) and builds on decades of research and analysis with input from 

councils of the National Academy of Sciences, the National Academy of Engineering, and the 

Institute of Medicine. Central to the development of the NRC equations is the incorporation 
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into a computer model allowing for a more accurate accounting of animal variation (NRC 2001).  

The equations published by the NRC give a more accurate measure of the value received from 

forage, which allowed farmers and researchers to rank different cropping systems (Eastridge et 

al. 1998).  

 

The Milk per Acre metric has gone through multiple revisions since its advent to remain current 

with the information available from forage analyses and the improved understanding of the 

cow’s digestion.  It was originally designed in the early 90’s for corn silage and hay and available 

for use in a Lotus 123 spreadsheet. Changes to Milk per Acre include updates with improved 

access to more advanced laboratory analyses, an adaptation to small grains, a user interface in 

Microsoft Excel, and the incorporation of total tract NDF digestibility (ttNDFD) (Undersander et 

al. 2006, Undersander et al. 2016). Milk per Acre can be easily calculated using Milk2006 for 

corn silage and Milk2016 for grass and legume forages.  Milk2006 and Milk2016 are specially 

formatted Excel spreadsheets available for download from the UW Madison Extension website 

(https://fyi.extension.wisc.edu/forage/).  With the aforementioned inputs, Milk2006 and 

Milk2016 return estimates of values including TDN, net energy of lactation (NEL), milk per ton of 

dry matter (TDM), and milk per acre. The calculations for these metrics, as used in the Milk2016 

spreadsheet, are shown in Table 2-1. Using the anticipated milk price, farmers can determine 

net yield and net profit per acre, allowing them to compare economic returns on various 

cropping systems.  
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Milk per Acre provides an example of how to better understand yields in the complex system of 

a dairy farm. It is important to note that the Milk per Acre metric is a retrospective indicator 

and can only give information on expected yield and profits after harvest. While the metric 

cannot be predictive of the effects of practices yet to be realized, it can help provide a thorough 

assessment of the previous season’s practices. This assessment can prove very helpful in 

anticipation of supplemental feed purchases, cover crop planning, and planning for next year’s 

crops.  Milk per Acre has also proven useful in research such as corn hybrid comparison trials 

conducted at the UW Madison Agronomy Department (Lauer et al. 2000; Schwab et al. 2003). 

Laboratories serving farmers in Wisconsin, both private and University-affiliated, include 

estimates of Milk per TDM in forage and silage analyses reports.  

RUSLE2 

The Revised Universal Soil Loss Equation, Version 2 (RUSLE2) is a composite indicator, built into 

a computer program, and used to estimate rill and interrill erosion for guidance in conservation 

and erosion control planning (Foster et al. 2002). It was constructed for a variety of 

applications, where soil is exposed to disruptions and erosive forces. The application of RUSLE2 

to agriculture is unique since the disruptions are regular and vary throughout the year. The 

motivation behind RUSLE2 was to be a site-specific erosion estimator that would consider local 

climate conditions, field characteristics, and land use. The usefulness of RUSLE2 is in comparing 

the effects on erosion levels of different practices on a given parcel of land (Foster et al. 2001). 

 

As indicated, RUSLE2 is the second version of revisions made to its predecessor the Universal 

Soil Loss Equation (ULSE), an empirically derived model first designed for cropland by 
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Wischmeier and Smith in 1965 and later adapted to other land uses (Renard et al. 1997). 

RUSLE1 was developed in the 1990s followed by RUSLE2 in the early 2000s (Foster et al. 2002). 

Both revised versions incorporate a number of process-based equations into the original 

equation (Foster et al. 2001). A full compendium of equations for RUSLE2 and references to 

their development literature is available in the “Science Documentation” for RUSLE2 from the 

USDA (USDA 2013). 

 

The calculation of erosion by RUSLE2 is based on the concept of Hortonian overland flow and 

composed of three facets, each a fundamental process in rill and interrill erosion: sediment 

detachment, transport, and deposition. A detachment point calculation is empirically calculated 

using a daily indexed method derived from the original USLE model, while the transport and 

deposition are calculated using process-based equations from numerous sources. These three 

features are calculated for each day and each point over the area of concern, termed the 

overland flow path. Once calculated at each time and location, these values are integrated over 

time and space to determine annual levels of runoff (USDA 2013). RUSLE2 is able to account for 

multiple scenarios of varying rates of infiltration and deposition across the overland flow path 

(Foster et al. 2001). 

 

Many of the base indicators necessary for RUSLE2 are incorporated into the RUSLE2 software 

database including soil and climate information, making it easier for farmers to compile the 

necessary data. Input requirements for farmers include field operations and cropping system 

management information, easily accessible from farm management records. The output of 
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RUSLE2 includes four variables, specific to an overland flow path, to aid in conservation 

planning: average annual erosion rate, average annual detachment rate, average annual 

erosion rate for the eroding portion, and average annual conservation planning soil loss. For a 

uniform overland flow path, these values will all be equal. All four are calculated on a temporal 

and spatial unit basis and integrated to determine annual rates. For example, the primary 

calculations for the average annual erosion rate is given in Table 2-2.  

 

The amount of erosion in a field is based on several physical characteristics and processes 

determined by RUSLE2 using process-based equations from various fields of study. These 

equations are numerous and extensive and used to determine the influence of individual field 

features including weather, soil makeup, topography, cover-management, support practices, 

vegetation, and residue. Once calculated, these features are incorporated (Table 2-2) and then 

integrated. This process of utilizing a myriad of research from multiple disciplines in order to 

most accurately represent field conditions is exemplary of the potential for transdisciplinary 

research and cooperation to achieve useful composite indicators for agricultural management. 

 

The usefulness of RUSLE2 is only applicable to rill and interrill erosion, which may seem to be a 

limitation, but incorporating other forms of erosion would likely detract from the reliability of 

the indicator. In practice, RUSLE2 will need to be used in conjunction with other metrics to fully 

understand the effects of management decisions. For example, the USDA has also developed 

the Wind Erosion Prediction System (WEPS) to estimate wind erosion from farm fields. 



 35 

Together, these two indicators can give a more comprehensive picture of erosion prevention 

and conservation management.  

 

Although the RUSLE2 computer program and databases are extensive, the model can be 

incorporated into other software as seen in the SNAPPlus nutrient management software 

developed at UW Madison.  This consolidation of management tools reduces the need for 

farmers to learn different software user interfaces and prevents redundancy in record keeping 

for management practices. This trend of software consolidation will certainly be a theme in 

agriculture over the coming decades as it adds to efficiency and accuracy of recordkeeping and 

decision making.  When developing composite indicators for on-farm use, partnering software, 

such as RUSLE2, that can be readily incorporated into any FMIS, such as SNAPPlus, should be a 

primary objective.  

 

Phosphorus index 

Eutrophication of surface waters caused by excessive phosphorus use in agriculture, 

predominantly intensive livestock production, is considered by the EPA to be the most 

widespread water quality problem in the US (EPA 2012). To address this concern the EPA and 

USDA worked to promote comprehensive nutrient management plans to ensure state specific 

guidelines for nutrient applications are met, assigning oversight to NRCS. The NRCS updated the 

NM 590 standard to require states to include phosphorus monitoring by 2008, giving the option 

to use one of three approaches – soil test P recommendations, soil test P thresholds, or P 

indices to determine risk for potential P loss (Sharpley et al. 2003). Most states (48) have 
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developed a phosphorus index used to help farmers meet the NRCS 590 standard (Lemunyon 

and Gilbert 1993). While there is variation between calculation methods and entirely different 

data sets used for estimation, the objective of the information and the types of units used are 

consistent. The phosphorus index provides a metric for the risk of phosphorus runoff from 

fields in units of quantity of phosphorus per area of land per unit of time (e.g. lb/ac/yr or 

kg/ha/yr).   

 

The phosphorus index (PI) is composed of three intermediate indices: risk of transport from 

field, phosphorus source levels, and site management. Depending on the specific PI these 

intermediates can be composed of various base indicators. Generally, risk of transport will 

include a metric of erosion risk such as RUSLE2, soil characteristics such as soil permeability and 

field slope, and distance to surface water; phosphorus source levels will include soil test 

phosphorus and application rates; and site management will include application methods and 

rates. This information is available with farm management records, a standard field soil test, 

and the NRCS soil survey (Sharpley et al. 2003).  

 

Three major recommended changes to the calculation of the PI have been made with 

improvements in the understanding of how field management affects phosphorus loading. The 

interaction between source and transport factors changed from additive to multiplicative to 

improve representation of site vulnerability being dependent on both factors. Distance to 

surface water was added to the transport factor to improve estimation of the necessary 

magnitude of a rain event to cause loading. Finally, parameters for erosion, soil test P, and P 
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application rate were made continuous and open ended to prevent small changes in base 

indicators leading to drastically different recommendations (Sharpley et al. 2003).  

 

For this paper I will focus on the phosphorus index used in Wisconsin. An interim state technical 

committee, assembled in Wisconsin to determine a response to the updated 590 standard, 

agreed to allow farmers to either follow soil test recommendations (for those not using 

software for nutrient management) or to calculate a phosphorus index. The Wisconsin 

phosphorus index (WPI) was subsequently developed and incorporated into the SNAPPlus 

nutrient management software in 2005. While the phosphorus index in a majority of states is 

categorical, WPI attempts to numerically estimate annual P loads from each field. (Ward-Good 

et al. 2010) 

 

The goal of the WPI was to provide a scientifically accurate index that was calculated using 

easily accessible base indicators. The required base indicators include nutrient application 

methods and rates, as well as soil test information. This information is used in conjunction with 

RUSLE2 to determine total P loading at the edge of the field due to surface runoff. The WPI is 

calculated by multiplying a total P delivery ratio by the sum of estimated particulate and 

dissolved P losses from the field edge (Ward-Good et al. 2010). These calculations are provided 

in Table 2-3. When accuracy is constrained by limited research or input imprecision, the index 

errs on the side of over-estimating. 
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Conclusion  

The three assessed composite indicators, Milk per Acre, RUSLE2, and the Phosphorus Index, 

provide a current working example of how composite indicators incorporated into FMIS can aid 

farmers in making informed farm management decisions. This discussion highlights how a 

collection of base indicators and data streams, including field information, local weather data, 

chosen cropping systems, and cultural practices, can be consolidated into three concise and 

accessible metrics that can make farm management more informed. The future of FMIS is not 

clear, and which software will dominate the industry has yet to be seen.  Researchers and 

developers of composite indicators must design their software as integrable APIs to allow for 

incorporation into any FMIS.  To provide an example of the use of these composite indicators in 

farm management decision making, Chapter 3 tests the hypothesis that adding winter rye cover 

crops to a corn silage system can reduce environmental externalities without adding to the risk 

of yield losses. 
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Tables of Primary Calculations 
 
Table 2-1. Calculations from Milk2016 Spreadsheet used to estimate expected Milk per Ton and Milk per Acre for grass and legume 
forages.  

Milk2016 
Indicator Equations Variables Notes 

Total 
digestible 
nutrients 

TDN = tdCP + 2.25*tdFA + tdNDF + tdNFC – 7 
    tdCP = 0.93*CP 
    tdFA = 0.97*(EE-1) 
    tdNDF = 100*NDF/NDFD 
    tdNFC = 0.98*NFC 
    NFC = 100 – (NDF + CP + EE + ash – NDFCP) 

TDN = total digestible nutrients 
td = total digestible 
CP = crude protein (% DM) 
FA = fatty acids (% DM) 
EE = ether extract (% DM) 
NDF = neutral detergent fiber (% DM) 
NDFD = in vitro 48hr digestible NDF 
(% of NDF) 
NFC = non-fiber carbohydrate 
NDFCP = 1.3 (corn silage) or 3.8 
(grasses and legumes) 
DM = dry matter 

This is a standard calculation 
of TDN. 
NFC is calculated using 
summative equation modified 
to include starch and non-
starch components. 
NDFD is measured over 48 
hours rather than 30 hours as 
it is more consistent despite 
some arguments that it is less 
accurate.   

Net 
energy of 
lactation 

NEL = ((0.0245*TDN) – 0.12)/2.2 
NEL = net energy of lactation 
(Mcal/lbDM) 

Calculated at 3x maintenance 
(NRC 1989) 

Milk 
from 

forage 

M = ((NEL*FI) – 
(0.08*613.640.75*PercF))/0.31 

M = milk from forage (lb/ton DM) 
FI = forage intake (ton DM) 
PercF = percent forage in rations 

M can be multiplied by forage 
yield per acre to give an 
estimate for milk yield per 
acre. 
This equation accounts for 
maintenance energy 
requirement. 
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Table 2-2. Example of primary calculations used by RUSLE2 software to calculate erosion.  
RUSLE2 

Indicator Equations Variables Notes 

Detachment  
! = 	 $ % &'

()*+

',-

. /+ 

 
&' = 0'1'2'34'5' 

A = average annual erosion rate 
(mass/(area*year)) 
m = number of years in calculation 
ri = erosivity factor (erosivity unit/(area*year)) 
ki = soil erodibility factor (mass/ erosivity factor) 
li = slope length factor (dimensionless) 
S = slope steepness factor (dimensionless) 
ci = cover-management factor (dimensionless) 
pi = support practice factor (dimensionless) 

Variables with subscript 
indicate long-term average for 
the ith day.  A provides a 
numerical integration of 
erosion over all days in 
calculation. The cover-
management and support 
practice factors are dependent 
on farm management practices.  

Transport >4 	= 	?>z@A 

Tc = transport capacity (mass/(overland flow 
width *time)) 
KT = coefficient of sediment transportability 
(mass/volume) 
z = coefficient of hydraulic resistance on transport 
capacity (dimensionless) 
q = overland flow rate (volume/(overland flow 
width *time)) 
s = steepness of overland flow path  

This assumes that all sediment 
is equally transportable. 

Deposition F5 = 	 (aH ∗ JK/@)(>4 	− 	N) 

Dp = deposition rate (mass/(area*time)) 
ad = deposition coefficient determined through 
calibration 
Vf = fall velocity of sediment in still water 
(length/time) 
q = overland flow rate (volume/(overland flow 
width *time)) 
Tc = transport capacity (mass/(overland flow 
width *time)) 
g = sediment load (mass/(unit overland flow 
width *time)) 

This is calculated for each 
sediment class and summed 
proportional to the distribution 
of total sediment load among 
classes. This equation assumes 
that total rill erosion is 
proportional to the difference 
between the runoff transport 
capacity and the sediment load.  
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Table 2-3. Calculations for the Wisconsin Phosphorus Index used in SNAPPlus (Ward-Good et al. 2010). 
Wisconsin Phosphorus Index 

Indicator Equations Variables Notes 

Particulate 
P from field 

edge 

PP = C*CP + S*SP + L*LP 
    CP =3* SSTP 
    SP =1* SSTP 
    LP =0.7* SSTP 
    SSTP = ISTP + ATP*8 
    ATP = Pbroad + Pinc*0.4 

PP = particulate P 
C = clay content (tons/(ac*yr)) 
CP = P concentrations in clay (mg*P/kg) 
S = silt content (tons/(ac*yr)) 
SP = P concentrations in silt (mg*P/kg) 
L = large particle content (tons/(ac*yr)) 
LP = P concentrations in large particles 
(mg*P/kg) 
SSTP = surface soil total P (mg/kg) 
ISTP = initial surface total P (mg/kg) 
ATP = total P added to surface (lb/ac) 
Pbroad = broadcasted P (lb/ac) 
Pinc = incorporated P (lb/ac) 

Large Particles includes sand and 
small and large aggregates.  
The coefficient on Pinc of 0.4 is an 
empirically based estimate of the 
proportion of residue left on surface 
after incorporation of manure and is 
assumed to be an overestimate. 
SSTP equation assumes that 1 lb P 
equals 0.5 mg/kg in a 6-inch plow 
layer. 

Soluble P 
from field 

edge 

SLP = SDP + DDP 
    SDP = (FR*FP + 
NFR*NFP)*0.2265 

SLP = soluble P (lb/(ac*yr)) 
SDP = soil runoff dissolved P 
(lb/(ac*yr)) 
DDP = direct dissolved P from 
applications (mg P/L) 
FR = frozen period runoff (in) 
FP = frozen period P concentration  
NFR = non-frozen period runoff (in) 
NFP = non-frozen period P 
concentration 

DDP includes manure and fertilizer 
applications. The correction factor of 
0.2265 in the SDP equation converts 
to units of lb/(ac*yr). Frozen period 
is designated as Nov 15 to Apr 15. To 
calculate frozen period runoff, a base 
volume is multiplied by a soil 
conditions factor that depends on 
field operations, contour, cover, and 
slope.  Non-frozen period runoff is a 
sum of runoff from individual storms, 
predicted by local historic weather 
patterns. Dissolved P from 
applications is a function of all 
applications’ soluble P with manure 
calculated using Bray P1 lab results. 

Phosphorus 
index PI = (PP + SLP)*TPDR 

PI = Wisconsin Phosphorus Index 
PP = particulate P 
SLP = soluble P (lb/(ac*yr)) 
TPDR = total P delivery ratio 

TPDR is a constant determined by 
the field slope and distance to the 
nearest surface water.  
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Chapter 3. Application of Composite Indicators to a Key Wisconsin 
Cropping System 
 

Introduction 
 
Utilizing composite indicators for farm management presents potential for incorporating 

environmental externalities into on-farm economic decision making. However, due to the 

complexity of composite indicators, farm management information systems (FMIS) are 

necessary to overcome computational constraints and beneficially employ such indicators. To 

demonstrate the decision-making process with composite indicators, I provide a current 

working example using the three aforementioned composite indicators: Milk per Acre, the 

phosphorus index (PI), and RUSLE2, to assess the field specific effects of adding a winter rye 

cover crop to a corn silage system. Cover crops can preserve ecosystem services by mitigating 

soil degradation, erosion, and nutrient loading. Due to the heterogeneity in agricultural 

systems, the extent of environmental benefits realized from cover crops and the effect on farm 

profits will vary between years and locations. The lack of cover crop adoption by farmers 

indicates uncertainty of these benefits and risks. For farmers to make well-informed decisions 

about cover crops, they need field-specific expectations of the effects on revenue as well as the 

effects on externalities. For this analysis I focus on the use of winter rye cover crops in a corn 

silage system. This is a popular rotation for dairy farmers in Wisconsin, with both crops 

providing sources of feed for the herd. I hypothesize that using composite indicators integrated 

into farm management information systems can provide evidence for the environmental 

benefits of winter rye cover crops in a corn silage system without an added risk of economic 

loss.  
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Corn Silage for Feed 

Using corn silage as feed on dairies and beef operations is common due to the forage’s 

consistently high yields and energy content. Corn silage also has a low cost of production per 

ton relative to other forages, and while storage costs have decreased in recent decades due to 

advancements in bagging technologies, transport costs remain high. Therefore, there is not a 

large market for corn silage, and it is primarily produced for use onsite as feed. As a result, corn 

silage production is a standard practice for many farms with cattle, accounting for a large 

amount of cropland in the US, at over 6 million acres nationally each year for 2015 through 

2019, with about 6.6 million acres harvested in 2019 (USDA 2018a; USDA 2020). 

 

A major issue for corn silage production is the lack of soil protection after harvest, as most of 

the crop’s above ground biomass is removed at harvest. Therefore, on highly erodible soils, soil 

conservation in these systems is an important concern. Maintaining field cover with crop 

residues is a simple way to reduce erosion impacts, however this is not feasible in a corn silage 

system. Winter cover crops present an alternative mode of maintaining field cover in corn 

silage production. 

 

Ecosystem Services and Externalities of Corn Silage 

In a corn silage system, the most evident ecosystem service being utilized is the provisioning 

service of the corn silage itself. Since markets for corn silage are sparse, comparison to more 

marketable forages allow it to be monetized. However, a fully informed decision of where and 
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when to plant corn silage requires additional understanding of the other ecosystem services 

that are affected. Of primary concern in this system, where field cover after harvest is low, is 

erosion leading to nutrient and sediment loading (Blanco-Canqui and Lal 2009).  

 

Erosion and soil degradation cost an estimated $44 billion per year in the U.S. due to lost 

productivity and environmental externalities such as nutrient loading (Pimentel et al. 1995). 

This cost of externalities is a prime example of how the utilization of one ecosystem service, 

crop production, can have unwanted effects on other ecosystem services: soil loss, well 

contamination, watershed eutrophication, and ocean hypoxic zones. Investment in 

conservation practices show great promise to reduce yield losses and unwanted environmental 

effects with as much as a five to one return (Pimentel et al. 1995).  

 

For this example, we focus on sediment loss and phosphorus runoff. The extent of these 

externalities from corn silage production is reduced with an increase of residue left on the field 

at harvest (Grande et al. 2005a; Grande et al. 2005b). However, since the common practice for 

corn silage is to remove most of the above ground plant matter, winter cover crops are an 

alternative method of providing field cover and have been shown to substantially reduce soil 

and phosphorus losses (Siller et al. 2016). 

 

Winter Rye Cover Crops 

While the potential benefits of cover crops are well documented, the literature suggests the 

extent of these benefits can vary year to year. Ateh and Doll (1996) found that rye cover has the 
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potential to control weeds without compromising soybean yields. However, this potential 

depended on soil moisture and the rye’s groundcover, with below normal precipitation 

reducing the weed control effectiveness of the rye and leading to lower soybean yields. Kasper 

et al. (2001) showed in a three-year study that oat and rye cover crops can increase soil 

infiltration and decrease runoff and erosion. Nevertheless, in the first year of the study, there 

was less cover crop growth than in subsequent years, and the effects on runoff and erosion 

were not significant. Additionally, the cover crops had a significant effect on infiltration in only 

one year of the study. Many studies have been able to show the potential for benefits from 

cover crop use, but these benefits prove highly dependent on exogenous, uncontrolled 

variables and vary in extent across years and locations. 

 

This high variability in the observed benefits from cover crops does little to address farmer 

concerns about uncertainty when using cover crops. Additionally, lack of farmer-accessible 

methods for determining the realized benefits of incorporating cover crops does little to 

encourage on-farm trialing.  It is therefore essential to provide farmers with methods that allow 

them to quantify their own benefits and determine situations where cover crops prove 

beneficial to their operations and a key component of best management practices.  

 

USDA SARE’s report on their 2017 Cover Crop Survey suggest a steady increase in cover crop 

use among farmers both in the number of farmers using cover crops and the percentage of 

farmed acres planted with cover crops (USDA 2018b). However, winter cover crops have yet to 

become the standard in the US. In a survey of Corn Belt farmers, Singer et al. (2007) found that 
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only 18% of respondents had ever used cover crops, and only 8% had used them in the year of 

the survey. These rates varied by state with Indiana and Illinois reporting higher rates of 

adoption at 15.9% and 15.7% respectively, while Iowa and Minnesota had lower adoption rates 

at 6.4% and 10.0% respectively.  This low rate of adoption suggests that farmers are hesitant to 

include winter cover crops in their crop rotations. 

 

There are many possible causes of deterred uptake of this technology, but they often relate to 

the farmer’s perception of an associated increase in risk. Common perceived risks of 

implementing cover crop technologies are cover crop establishment difficulties due to time and 

weather constraints, negative yield impacts on the primary crop due to delayed planting and 

resource competition, and a lack of economic return on cover crop investments. Most 

noticeable is the uncertainty in the level of risk that cover crops pose. While there is general 

agreement in the perceived benefits of cover crops, it is not sufficient in outweighing the 

uncertainty of risk. Among non-adopters, many farmers indicate an interest in the technology 

but generally would like more information about how cover crops would benefit their farm 

(Arbuckle and Roesch-McNally 2015; USDA 2018b). 

 

Central to farmers’ concerns of added risks of winter cover crop use are the effects on the 

primary crop. These effects are often perceived to be negative and can be due to: delayed 

planting, increased soil moisture, delayed soil warming in spring, mechanical interference for 

planting equipment, or resource competition. However, in a comprehensive meta-analysis of 65 

studies spanning 50 years that investigated the effects of winter cover crops, Marcillo and 
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Miguez (2017) found that grass cover crops did not have significant effects on yields for the 

following corn silage (n=140).   

 

Winter rye provides a good option for a cover crop in a corn silage system in the northern Corn 

Belt. Rye is a hardy crop that provides good soil coverage, especially in no-till and minimum-

tillage systems, providing as much as 5 tons of aboveground dry matter per acre. Rye can be 

planted relatively late in the season to not interfere with corn silage harvest and it is an 

effective weed and pest suppressor. Additionally, rye has the potential to capture substantial 

residual nitrogen after a corn crop (West et al. 2020).  

 

On-farm technology adoption such as cover crops can prove daunting to farmers for many 

reasons. The barriers for uptake are usually more apparent than the benefits. To help abate this 

issue, researchers and crop consultants can provide farmers with methods of anticipating the 

field and farm specific results of a technology’s adoption, as well as the methods of assessing 

these effects after a trialing period. Composite indicators in farm management software can 

provide farmers with a better understanding of the risks of incorporating cover crops into their 

rotation as well as the potential benefits received and reduce the uncertainty that prevents 

uptake of the technology. We will demonstrate this process using as an example the decision 

whether or not to adopt a winter rye cover crop in a corn silage system. 
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Data and Methods 

Using research plot data from a study of winter rye cover crops in corn silage, we demonstrate 

the process of a dairy farmer using readily available data to access economic and environmental 

information from composite indicators employed via on-farm software to determine best 

management practices.  

 

The Data 

The data for this analysis are from West et al. (2020). Corn silage and corresponding winter rye 

cover forage yields were collected in a five-year (2012-2016) randomized complete-block, split-

plot study at the University of Wisconsin’s Arlington Research Center (43.304°, -89.383°) on a 

Plano silt loam soil. Three 43m x 9m plots of cover treatments: rye cover harvested as forage 

(RF), unharvested rye cover (RC), and no rye cover (NC), were split across three 43m x 3m plots 

of nitrogen rates: 67, 112, and 179 kg ha-1 (equivalently 60, 100, and 160 lb ac-1). Nitrogen was 

sidedressed as ammonium nitrate. Additionally, each fall after corn harvest, all plots received 

applications of liquid dairy manure ranging from 90.7 to 115.0 kL ha-1. The location of plot 

treatments was consistent over the five years. 

 

Winter rye was drilled into the RC and RF treatments after the fall manure application at a rate 

of 110 kg ha-1. The following spring, in late April or early May, the rye cover in RC treatment 

plots was terminated with a glyphosate burndown. The NC treatment plots were sprayed at the 

same time. The rye cover in the RF treatment plots was chopped and harvested in mid to late 

May and the stubble was then sprayed with glyphosate. Corn in all treatments was planted with 
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a 0.76 m row spacing and a starter fertilizer of 6N – 16P2O5 – 47K2O kg ha-1. Corn silage was 

hand harvested at 65% moisture. The rye forage and cover as well as the corn silage were 

sampled from each plot for nutrient analysis and dry matter content. For additional details 

about the treatment practices, see West et al. (2020).  

 

Partial Budget Analysis 

Central to the decision to adopt new technology in farm operations is the consideration of its 

effect on profits. Farm budgets are extensive, so farmers generally use partial budgeting to 

simplify the analysis. Partial budget analysis involves calculating changes to cost and revenue 

from a change in operations to determine the effects on expected profits without creating a full 

cost of production budget. Expected profits, ![#$], were calculated on a per acre basis for each 

the NC, RF, and RC treatments (' ∈ {*+,,-, ,+}). 

![#$] = 0![1$] − 3$ − +. 

Here p is the price of milk ($/cwt), E[Yi] is the expected milk produced from harvested forage 

calculated by Milk per Acre (cwt/ac), Wi is the treatment specific costs ($/ac), and C is all other 

costs for the production system ($/ac). The expected difference in profits between two 

treatments i and j is: 

![Δ#] = !5#67 − ![#$] = 0!5167 − 36 − + − (0![1$] −3$ − +) 

= 0:!5167 − ![1$]; − :36 −3$; = 0![Δ1] − 	Δ3. 

In short, the expected profit difference is the milk price multiplied by the difference in milk per 

acre, minus the difference in costs for each treatment.   
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Treatment Specific Costs 

In this example, treatment costs included direct costs associated with the cover crop treatment 

and nitrogen rate, as well as phosphorus and potassium removal by the forages. Direct costs 

from adding a rye cover crop consisted of rye seed as well as labor and machinery expenses for 

planting. If the cover crop is not harvested, the cost of materials and labor for an additional 

herbicide application for burndown is included. For rye planting, harvest, and burndown, the 

cost of labor and machinery is included.  Since equipment and labor costs are variable and 

depend on the farmer’s access to the necessary machinery, for this analysis the custom rates 

published in the 2017 Wisconsin Custom Rate Guide were used. Since the custom rate is the 

cost of bringing in a third party for the field operation, it is assumed to include labor and 

equipment costs, including upkeep and depreciation, as well as overhead costs. Additionally, 

using the custom rate allows us to ignore opportunity costs of the farmer’s time and 

equipment, which would otherwise require additional considerations.  

 

Nitrogen input costs were calculated for each treatment, but since application timings and 

methods did not change, the partial budget approach allowed for costs of labor and equipment 

for fertilization to be ignored. However, higher application rates may require additional trips to 

the field, and a farmer may choose to include these costs, so this assumption is a simplification 

for this analysis. Only the cost of the fertilizer itself was included, at $0.40 per pound of N.  The 

amount of phosphorus and potassium removed by the corn and rye is also included in the cost 

calculation to account for lower yielding plots requiring less nutrient supplementation in 

subsequent years. Removal was calculated using the reported concentrations in the forage 
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analysis multiplied by the measured per-acre yield. A dairy farmer may choose to ignore these 

fertilizer costs when a majority of credits come from manure applications.  The added costs for 

the 2012 growing season at the 100 lb/ac nitrogen rate are summarized in Table 3-1 as an 

example.  

 

 

 

Table 3-1. Example input costs ($/ac) for the partial budget analysis in 2012 with 100 lbs 
N/ac. 

 
Input 

No Cover 
(NC) 

Unharvested 
Cover (RC) 

Harvested 
Cover (RF) 

Rye Seed $ 0 $ 20 $ 20 
Rye Planting $ 0 $ 20 $ 20 

Herbicide Burndown $ 0 $ 26 $ 0 
Rye Harvest $ 0 $ 0 $ 110 

 Nitrogen $ 40 $ 40 $ 40 
P Removed by Rye $ 0 $ 0 $ 16.07 

P Removed by Corn $ 22.01 $ 23.61 $ 18.36 
K Removed by Rye $ 0 $ 0 $ 55.13 

K Removed by Corn $ 45.53 $ 52.52 $ 33.72 
Total Treatment Cost (Wi) $ 107.54 $ 182.13 $ 313.28 

 

Expected Yield 

To determine the changes in revenues from adding rye cover crops, we used the composite 

indicator Milk per Acre, implemented with the decision support tools Milk2006 and Milk2016, 

available from UW Extension (https://fyi.extension.wisc.edu/forage). The necessary base 

indicators from the nutrient analysis reported for each treatment and yield measurement from 

each plot in each year from the West et al. (2020) data were entered into the Milk2006 and 
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Milk2016 spreadsheets. The spreadsheets returned fitted values for the predicted Milk per 

Acre, which is the production composite indicator.  

 

Maximum Likelihood Yield Estimation 

For maximum likelihood estimation of treatment effect parameters, yields were assumed to 

follow a normal distribution conditional on the treatments. Specifically, a linear model was 

assumed for the conditional mean (µ) and conditional standard deviation (s) of milk per acre. 

The additive properties of normally distributed random variables allow for direct interpretation 

of the parameter estimates. The normal density function for yield (y) is: 

=(>) = 	
?

√ABCD
E
F	
(GHI)D

DJD . 

Hence, the log-likelihood function can be written as: 

ℓL(M, N) = ∑ PQR	=(>S|M, N) =	
L
SU? 	∑ − log(N) −	

?

ACD
(>S − M)

AL
SU? , 

Where >S  is the measure of yield (TDM per acre or Milk per acre) for observation k, and the 

linear equations for the parameters µ and s are: 

M = 	YZ + Y\]^\] +	Y\_^\_ +	Y`?ZZ^`?ZZ +	Y`?aZ^`?aZ + ∑ Yb b̂
AZ?a
bUAZ?c , 

N = 	dZ + 	d\]^\] +	d\_^\_ +	d`?ZZ^`?ZZ +	d`?aZ^`?aZ +	∑ db b̂
AZ?a
bUAZ?c . 

Here, ^e are indicator variables equal to one for observations in treatment f ∈

{,+, ,-, *100,*160}, where N100 and N160 indicate the nitrogen application rates of 100 

and 160 lbs/ac. Additionally, since the data are from a longitudinal study, the data were pooled, 

and indicator variables were added to control for year fixed effects.  Therefore, the coefficients 

give treatment effects for the conditional mean and standard deviation of the yield distribution. 
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In this case, when all indicators are zero, the intercepts give the mean and standard deviation 

of the no cover treatment at 60 lbs/ac of nitrogen in 2012. The estimation was also performed 

with added interaction terms between cover crop treatments and year. Log-likelihood ratio 

tests were used to compare models.  

 

Estimation in R used the Newton-Raphson method with the ‘maxLik’ CRAN package. The Yj  and 

dj estimates are the mean (M̂) and standard deviation (Nl) for each respective treatment. The 

expected change in milk yield per acre for the rye forage and rye cover treatments are then: 

![1\_ − 1̀ ]] = M̂\_ − M̂`] = Yj\_, 

![1\] − 1̀ ]] = M̂\] − M̂`] = Yj\] . 

Then the expected change in profit from adding rye forage (RF) and rye cover (RC) treatments 

to the no cover crop (NC) treatment are: 

![Δ#]\_ = 0Yj\_ − (3\_ − 3̀ ]), 

![Δ#]\] = 0Yj_] − (3\] − 3̀ ]). 

Using the additivity properties of independent and identically distributed normal random 

variables we can estimate the variance and standard deviation of yield differences:  

mnop (1\_ − 1̀ ]) = 		mnop (1\_) + mnop (1̀ ]) 	− 2+Qrp (1\_, 1̀ ]) = Nl\_
A + Nl`]

A − 2Nl\_,`] 	=

:djZ +	dj\_;
A
+	djZ

A 	− 	2djZ:djZ +	dj\_; 		= 	 2djZ
A + 2djZdj\_ + dj\_

A − 2djZ
A − 2djZdj\_ = dj\_

A , 

Nl\_ = sdj\_
A . 
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When year-treatment interaction terms are added, the calculation is similar. As an example, the 

estimated treatment effects and the variance and standard deviation for the harvested rye 

treatment (RF) in 2016 are: 

![1\_×AZ?a − 1̀ ]×AZ?a] = M̂\_×AZ?a − M̂`]×AZ?a = Yj\_ + Yj\_×AZ?a, 

mnop (1\_×AZ?a − 1̀ ]×AZ?a) = 		 :dj\_ + dj\_×AZ?a;
A
, 

Nl\_×AZ?a = s:dj\_ + dj\_×AZ?a;
A
. 

Risk 

The economic risk of incorporating rye cover crops was assessed using the breakeven 

probability for each cover treatment. The breakeven probability is the probability that the 

expected change in profits is non-negative, ℙ(E[Δ#] ≥ 0). This probability can also be 

interpreted as the probability of recuperating the added costs of the rye cover crop. For 

example, the breakeven probability for adding an unharvested rye cover crop is: 

ℙ:E[Δ#]xy ≥ 0; = 	ℙ:0Yjxy − :3xy −3Lz; ≥ 0; 

= ℙ{Yjxy ≥
|}~F|�Ä

Å
Ç = 1 − Φxy {

|}~F|�Ä

Å
Ç. 

Here Φyz(Ñ) = ∫ =xy(
Ü

Fá
à)âà is the normal cumulative distribution function (CDF) with a mean 

and standard deviation given by the estimated treatment effects, Yjxy and djxy. Normality of the 

coefficient estimates is ensured by the normality assumptions for the maximum likelihood 

estimation of the multivariate normal.  

This characterization can provide additional insight prior to analysis. The cost of adding the rye 

forage cover crop :3xy −3Lz; has the units $/ha and the price (0) has the units $/Mg, so the 
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term in the CDF has units of Mg/ha, which is the same as the units of the estimated treatment 

effects. In this sense, we can think of the term in the CDF as the change in milk production 

needed to offset the added cost of production.  Additionally, this specification shows that as 

the price of milk increases, the breakeven probability increases, and as the cost of adding the 

cover crop increases, the breakeven probability decreases. This result will have implications for 

the decision to harvest or burndown an established rye cover crop. 

Added costs were calculated for each cover treatment, at each nitrogen rate, and in each year. 

Since added nitrogen costs were in each cover treatment and differences in cost between cover 

treatments were similar across nitrogen rates and years, averages were taken across nitrogen 

rates for analysis. The analysis used a milk price of $429.90/Mg ($19.50/cwt), the average milk 

price reported by the USDA NASS Milk Production report for Wisconsin over the trial period 

(https://www.nass.usda.gov/Statistics_by_State/Wisconsin/Publications/Dairy).  

Breakeven probabilities and the treatment effect on profit were calculated from the regression 

of total milk produced on the covariates including year-treatment interaction terms. Quartile 

estimates are calculated for treatment effects on per hectare profits using the NORM.DIST and 

NORM.INV functions in Microsoft Excel.  

 

Assessment of Environmental Externalities 

SNAPPlus was used to assess environmental effects by calculating composite indicators, the 

phosphorus index (PI) and RUSLE2. Management practices and field characteristics from the 
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West et al. (2020) study were entered into the SNAPPlus program. Values for the PI and RUSLE2 

were returned for each treatment. 

 

Results 

Model Selection 

A likelihood-ratio test between regressions with and without year-treatment interaction effects 

shows joint significance for the year-treatment interaction effects in all models (Tables 2-5). For 

the models with total milk production as the dependent variable, the log-likelihood ratio 

statistic was 42.89 (Table 3-2), which is significant at the 0.001% critical level in a chi-squared 

distribution with 16 degrees or freedom. Therefore, year interaction effects were included in 

the model used for the final analysis.  

 

Treatment Effects 

The most noticeable effect on yield in terms of magnitude and significance were the year fixed 

effects. Table 3-2 gives estimates for treatment effects on total milk production using the Milk 

per Acre metric. The intercept estimate, for milk production in 2012, with no cover, at 67 kg/ha 

nitrogen is 22.12 Mg/ha. The year fixed effects are all positive (9.85, 12.33, 18.22, 8.23) and 

highly significant (p ≤ 0.01) This is not surprising since these are the estimated additional milk 

per acre yields relative to 2012, a growing season with drought conditions (West et al. 2020). 

 

In the model without year-treatment interaction terms, the effects on total milk production of 

adding a harvested and unharvested rye cover were -0.15 and 0.67 Mg/ha respectively, but 
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neither were significant (Table 3-2). When year-treatment interaction terms were added, the 

harvested rye treatment estimate was -1.88 Mg/ha (0 = 0.09). However, all year interaction 

terms for the harvested rye treatment were positive with the ^xy × ^AZ?a coefficient estimate 

largest at 7.75 Mg/ha (p ≤ 0.001). 

 

Harvested Rye 

It should be noted that substantially higher rye forage yields were harvested in 2012 and 2016, 

averaging 3.44 and 3.08 Mg/ha dry matter. West et al. (2020) propose this may be due to 

higher than normal temperatures in those rye growing seasons. While this led to substantial 

increased profits from the rye treatment in 2016, the RF treatment performed poorly in 2012 

due to a negatively affected subsequent corn yield. This corn yield loss could be a result of 

drought conditions through the 2012 growing season leading to increased competition 

between the rye and corn crops.  

 

In all models with corn silage yield and milk from corn silage as dependent variables, the RF 

treatment had negative effects. For example, the RF treatment effect on total corn production 

without year treatment interaction terms was -3.49 Mg/ha (0 ≤ 0.001). This is consistent with 

research that points to resource competition between primary and secondary crops as a major 

concern for cover crops. These negative effects were not seen in the unharvested rye 

treatment, which in all models had a positive coefficient estimate, though not significantly 

different from zero.  

 



58 
 

Nitrogen Rate 

In all regressions, nitrogen rates were positively correlated to production levels. The effect was 

larger and more significant for the 179 kg/ha rate than the 112 kg/ha rate. These effects were 

significant at varying critical levels. For example, increasing the nitrogen rate to 179 kg/ha 

increased the predicted milk production by 1.81 Mg/ha (0 = 0.059) and increased total forage 

production by 1.20 Mg/ha (0 ≤ 0.001) relative to the 67 kg/ha rate. Increasing the nitrogen 

rate to 112 kg/ha increased the predicted milk production by 1.19 Mg/ha (0 = 0.193) and 

increased total forage production by Mg/ha (0 ≤ 0.05) relative to the 67 kg/ha rate. 

Additionally, in the harvested rye treatment alone, higher nitrogen rates (112 kg/ha and 179 

kg/ha) had positive effects on both the corn silage yield (1.22 Mg/ha (0 ≤ 0.05) and 1.35 

Mg/ha (0 ≤ 0.001) respectively) and the total Milk per Acre value (2.70 Mg/ha (0 ≤ 0.05) and 

2.01 Mg/ha (0 ≤ 0.01) respectively) (Table 3-7).  

 

Breakeven Probability 

Since the only variation in production costs within a treatment each year was the calculated P 

and K removal, added costs for the cover treatments were fairly consistent. The added milk 

production needed to break even for the two cover treatments averaged across years and 

nitrogen rates was 0.39 Mg/ha for the RC treatment, and 1.09 Mg/ha for the RF treatment. The 

breakeven probability (BEP), presented in Table 3-10, varied for both treatments from 0 to 1 

showing a wide variation in the profitability of the cover crops between years. The RC 

treatment had BEP above 0.95 in three of the five years, but 0.05 or below for the other two. 

The RF treatment had a BEP of 1 in 2016 but it was 0 in 2012 and 2013 and less than 0.5 in the 
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other two years. Despite this, the average expected change in profits across all five years for 

both cover treatments was positive. While the RC usually (60% of years) saw increased profits, 

the higher average for the RF treatment can only be attributed to the very high added profits in 

2016.  

 

SNAPPlus 

Calculations from SNAPPlus of RUSLE2 and the Phosphorus Index (PI) for each treatment are 

presented in Table 3-8. The RUSLE2 value for NC treatments was 1.9 t/ac/year, higher than the 

RC and RF treatments’ value of 1.1 t/ac/year. Since cultural practices remained consistent year 

to year, RUSLE2 gave the same results each year. Additionally, since harvesting a cover crop 

does not affect RUSLE2 or the PI, they are the same for the RC and RF treatments.  

 

The PI values for the NC treatment were also higher than the cover treatments with a five-year 

average of 3.5 compared to 2.3 for the RC and RF treatments. Variation from year to year of the 

PI was due to variation in manure application rates. Differences in manure application rates 

also contributed to variability in the nitrogen credits.  

 

Discussion  

The preceding analysis provides a general framework for a farmer to make a well-informed 

decision about the use of winter rye cover crops in a corn silage system. The analysis presented 

verifies the potential of composite indicators incorporated into farm management information 

systems for including environmental externalities in on-farm decision making. This analysis 
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strongly supports the planting of winter rye cover crops in the specified system but suggests the 

decision to harvest the rye is not always clear. A hybrid RC/RF system is likely optimal. 

 

The estimated reduction in predicted phosphorus loading (34%) and soil erosion (42%) show 

substantial improvement in ecosystem service maintenance. This is consistent with findings in 

the literature, which is to be expected, since the predictions of SNAPPlus are based on 

published research findings.  The changes in corn production, milk production, and profits from 

adding the unharvested rye cover crop were small, positive, and not significant. These findings 

should help encourage the planting of winter rye cover crops in this system. The farmer can get 

the benefits of reduced negative externalities without risking substantial losses to their primary 

crop. 

 

While the decision to plant winter rye cover crops is well supported by this analysis, the 

decision to harvest the cover has more complexity. The predicted decrease in profits for four of 

the five years would likely dissuade a farmer’s decision to harvest the rye cover crop. 

Fortunately for the farmer, this decision does not need to be made until the spring, when the 

rye yield can already be predicted. The added harvest costs are not realized unless the rye is 

actually harvested, and most of the environmental benefits are independent of the decision to 

harvest. Therefore, a farmer could plant a winter rye cover in the fall, and if the rye has a good 

year (e.g. 2016) then the farmer can decide to harvest the rye for feed. If the rye has a poor 

stand (e.g. 2013-2015), the farmer can do an early burndown, still receive the benefits of the 
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cover crop, and not risk yield losses of the primary crop. The price of milk and the farmer’s need 

for forage in the early season would affect these decisions. 

 

The benefits of harvesting the rye cover will not always be clear. For example, in 2012, a high 

rye production was observed, however drought in the following growing season decreased the 

corn silage production following the harvest rye cover. A decision made in this scenario might 

consider that the rye is likely to return a high yield, but a forecasted dry summer may make the 

decision unprofitable. At this point the farmer could factor in other considerations such as the 

current on-farm demand for feed and the cost of buying alternatives. If the farmer is low on 

feed, and they have a diversified set of options for feed later in the season, then this could 

support the decision to harvest. In this sense, rye cover crops displace some of the risk of a 

single crop by utilizing the field throughout more of the year and diversifying the options for 

extracting marketable ecosystem services.  

 

A final consideration for the farmer is the possibility of payments for ecosystem services. 

Specifically, through the working land payments discussed in Chapter 1.b.iv, a farmer can 

receive per-area transfers for implementing cover crops. These can be in the form of one-time 

adoption assistance or annual subsidies. Eligibility and access to these payments is not always 

guaranteed, but when awarded, can push the breakeven probability to certainty.   

 

In this example, regression methods were used to estimate returns from each cropping system. 

In general, farmers will not have access to robust statistical methods that do not require 
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extensive training. However, less contrived approaches, such as yield monitor data and 

historical averages can be used. As FMIS become more capable, much of this analysis can be 

incorporated to improve the decision-making process. Additionally, many important 

deliberations were incorporated into this analysis which must be central considerations of FMIS 

developers.  

 

Conclusion 
 
The decision to plant cover crops in a corn silage system of a dairy farm can depend on a variety 

of factors that can often be hard to coordinate. This is especially the case when not all of the 

benefits realized can be monetized. Useful composite indicators implemented through farm 

information management systems provide a framework for ensuring farmers have the 

necessary information to make well-informed, holistic farm management decisions.  In 

conjunction with payments for ecosystem services, this technology can improve the 

maintenance of ecosystem services by agroecosystems. 
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Tables 
 
Table 3-2. Total forage yields (Mg/ha) and predicted milk (Milk2006 and Milk2016, Mg/ha) yields by treatment and year, averaged 
across nitrogen rates (standard deviations in parentheses). Total forage is the corn yield for the NC and RC treatments and the sum 
of the corn and rye yields for the RF treatment. Treatments are NC for no cover crop, RC for a rye cover crop, and RF for a rye cover 
crop harvested for forage. 

 Predicted Milk Yield Total Forage Yield RF Crop Yield 

Year NC RC RF NC RC RF Corn Rye 

2012 
22.3 23.7 21.2 14.5 14.9 14.0 8.5 5.5 

(3.4) (2.6) (2.2) (2.2) (1.4) (0.8) (0.8) (0.3) 

2013 
33.4 31.8 33.3 19.4 19.0 19.9 17.6 2.3 

(2.9) (2.5) (2.9) (1.4) (1.1) (1.5) (1.6) (0.1) 

2014 
35.7 37.5 35.0 22.2 23.1 22.2 19.2 3.0 

(5.7) (5.4) (2.6) (2.1) (2.2) (1.4) (1.2) (0.3) 

2015 
41.4 44.1 40.9 24.9 26.2 24.4 21.1 3.3 

(4.1) (2.6) (2.7) (2.6) (1.8) (1.4) (1.4) (0.2) 

2016 
30.8 30.9 36.6 20.2 19.8 23.0 17.0 6.0 

(3.4) (3.7) (3.1) (2.1) (2.3) (1.6) (1.6) (0.3) 
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Table 3-3. Estimates for treatment effects on total milk production (Mg/ha) with and without treatment-year interaction effects. 

 Mean Function Std. Dev. Function Mean Function Std. Dev. Function 
Variable Estimate Std. Err. Estimate Std. Err. Estimate Std. Err. Estimate Std. Err. 
Intercept 21.50 *** 0.87 2.56 ** 0.79 22.12 *** 0.81 1.79  3.56 
RC 0.67 

 
0.77 -0.26 

 
0.57 0.98 

 
1.75 0.12  4.25 

RF -0.15 
 

0.75 -0.74 
 

0.57 -1.88 · 1.12 0.44  5.69 
N100 1.04 

 
0.80 0.68 

 
0.66 1.19 

 
0.91 1.34  1.70 

N160 1.29 * 0.66 0.27 
 

0.55 1.81 · 0.96 -0.29  0.93 
2013 10.20 *** 0.83 0.12 

 
0.64 9.85 *** 1.13 0.44  4.92 

2014 13.74 *** 0.99 1.83 * 0.74 12.33 ** 4.28 3.77  7.16 
2015 19.55 *** 0.83 0.78 

 
0.69 18.22 *** 1.70 2.54  6.31 

2016 10.71 *** 1.14 1.94 * 0.83 8.23 *** 2.03 0.81  3.65 
RC X 2013 -  - -  - -2.17 

 
2.88 -0.47  5.63 

RF X 2013 -  - -  - 1.53 
 

2.04 -0.59  7.36 
RC X 2014 -  - -  - 1.58 

 
3.22 -1.06  8.95 

RF X 2014 -  - -  - 1.69 
 

4.16 -3.84  9.39 
RC X 2015 -  - -  - 1.90 

 
3.67 -1.56  6.65 

RF X 2015 -  - -  - 0.63 
 

1.94 -3.34  9.08 
RC X 2016 -  - -  - -2.13 

 
7.80 0.76  4.49 

RF X 2016 -  - -  - 7.75 *** 2.04 -0.41  5.94 
ℓ"($̂, '(): -230.79 -209.35 
LLR = 42.89; df = 16; *(> ,-) = 0.00029 *** 
Significance level: *** = 0.001; ** = 0.01; * = 0.05; · = 0.1.   
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Table 3-4. Estimates for treatment effects on total forage production (Mg/ha) with and without treatment-year interaction 
effects. 
 Mean Function Std. Dev. Function Mean Function Std. Dev. Function 
Variable Estimate Std. Err. Estimate Std. Err. Estimate Std. Err. Estimate Std. Err. 
Intercept 13.86 *** 0.47 1.46 *** 0.42 14.05 *** 0.69 1.82 ** 0.56 
RC 0.16 

 
0.40 -0.29 

 
0.30 0.20 

 
0.76 -0.80 

 
0.57 

RF 0.11 
 

0.40 -0.45 
 

0.37 -0.70 
 

0.77 -0.84 
 

0.60 
N100 0.62 

 
0.40 0.27 

 
0.36 0.85 * 0.34 0.29 

 
0.28 

N160 0.94 ** 0.34 0.09 
 

0.26 1.20 *** 0.30 -0.09 
 

0.30 
2013 4.91 *** 0.45 -0.08 

 
0.36 4.58 *** 0.80 -0.70 

 
0.59 

2014 8.07 *** 0.44 0.56 · 0.34 7.52 *** 1.02 0.34 
 

0.73 
2015 10.65 *** 0.48 0.74 · 0.41 10.18 *** 1.10 0.69 

 
0.82 

2016 6.68 *** 0.63 1.07 * 0.44 5.58 *** 0.89 -0.04 
 

0.67 
RC X 2013 -  - -  - -0.50 

 
0.90 0.39 

 
0.64 

RF X 2013 -  - -  - 1.14 
 

0.98 0.89 
 

0.73 
RC X 2014 -  - -  - 0.69 

 
1.31 0.73 

 
0.91 

RF X 2014 -  - -  - 0.71 
 

1.21 -0.01 
 

0.86 
RC X 2015 -  - -  - 1.09 

 
1.38 0.34 

 
0.96 

RF X 2015 -  - -  - 0.01 
 

1.21 -0.77 
 

0.99 
RC X 2016 -  - -  - -0.84 

 
1.24 1.17 

 
0.87 

RF X 2016 -  - -  - 3.53 ** 1.10 0.35 
 

0.78 
ℓ"($̂, '(): -140.60 -121.55 

LLR = 38.10; df = 16; *(> ,-) = 0.0015 ** 
Significance level: *** = 0.001; ** = 0.01; * = 0.05; · = 0.1. 
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Table 3-5. Estimates for treatment effects on milk production from corn (Mg/ha) with and without treatment-year 
interaction effects. 
 Mean Function Std. Dev. Function Mean Function Std. Dev. Function 
Variable Estimate Std. Err. Estimate Std. Err. Estimate Std. Err. Estimate Std. Err. 
Intercept 19.95 *** 0.93 2.93 *** 0.82 22.20 *** 0.72 1.72 * 0.67 
RC 0.86 

 
0.83 0.09 

 
0.60 0.93  1.07 0.22  0.74 

RF -6.03 *** 0.89 -1.25 * 0.63 -10.16 *** 1.01 0.26  0.78 
N100 1.12 

 
0.77 0.72 

 
0.69 1.31 . 0.71 1.49 ** 0.53 

N160 1.44 * 0.72 0.79 
 

0.60 1.78 *** 0.43 -0.36  0.34 
2013 12.98 *** 0.96 0.35 

 
0.86 9.71 *** 1.09 0.50  0.82 

2014 15.71 *** 0.96 0.97 
 

0.75 12.18 *** 2.15 3.85 * 1.52 
2015 20.80 *** 0.81 0.20 

 
0.72 18.12 *** 1.61 2.67 * 1.21 

2016 11.25 *** 0.96 0.43  0.90 8.20 *** 1.18 0.88  0.91 
RC X 2013 -  - -  - -2.05  1.62 -0.51  1.02 
RF X 2013 -  - -  - 6.09 *** 1.58 -0.34  1.08 
RC X 2014 -  - -  - 1.72  3.02 -1.16  1.96 
RF X 2014 -  - -  - 5.36 * 2.37 -3.95 * 1.63 
RC X 2015 -  - -  - 1.95  2.12 -1.67  1.40 
RF X 2015 -  - -  - 3.08 . 1.79 -3.70 ** 1.34 
RC X 2016 -  - -  - -2.22  2.16 0.64  1.36 
RF X 2016 -  - -  - 7.19 *** 1.75 -0.28  1.22 
ℓ"($̂, '(): -230.37 -204.34 

LLR = 52.06; df = 16; *(> ,-) = 1.07x10-5 *** 
Significance level: *** = 0.001; ** = 0.01; * = 0.05; · = 0.1. 
 
  



67 
 

 
Table 3-6. Estimates for treatment effects on corn silage production (Mg/ha) with and without treatment-year 
interaction effects. 
 Mean Function Std. Dev. Function Mean Function Std. Dev. Function 
Variable Estimate Std. Err. Estimate Std. Err. Estimate Std. Err. Estimate Std. Err. 
Intercept 12.6 *** 0.57 2.30 *** 0.46 14.07 *** 0.65 1.84 *** 0.55 
RC 0.36 

 
0.45 -0.12 

 
0.33 0.25 

 
0.72 -0.78  0.56 

RF -3.49 *** 0.45 -0.84 * 0.33 -6.33 *** 0.71 -0.85  0.58 
N100 0.67 · 0.39 -0.10  0.32 0.82 * 0.35 0.25  0.29 
N160 1.03 ** 0.40 0.05  0.30 1.18 *** 0.29 -0.23  0.27 
2013 7.09 *** 0.65 -0.13  0.47 4.54 *** 0.77 -0.62  0.59 
2014 9.48 *** 0.53 -0.22  0.40 7.44 *** 0.96 0.37  0.73 
2015 11.8 *** 0.53 -0.11  0.41 10.18 *** 1.06 0.76  0.81 
2016 7.08 *** 0.56 -0.23  0.43 5.59 *** 0.85 -0.06  0.66 
RC X 2013 -  - -  - -0.47 

 
0.86 0.35  0.63 

RF X 2013 -  - -  - 4.54 *** 0.93 0.90  0.70 
RC X 2014 -  - -  - 0.72 

 
1.23 0.76  0.91 

RF X 2014 -  - -  - 3.45 ** 1.10 -0.23  0.82 
RC X 2015 -  - -  - 0.97 

 
1.33 0.28  0.95 

RF X 2015 -  - -  - 2.35 * 1.14 -0.90  0.97 
RC X 2016 -  - -  - -0.97 

 
1.18 1.17  0.86 

RF X 2016 -  - -  - 3.23 ** 1.04 0.38  0.76 
ℓ"($̂, '(): -145.58 -118.89 

LLR = 53.38; df = 16; *(> ,-) = 6.54x10-6 *** 
Significance level: *** = 0.001; ** = 0.01; * = 0.05; · = 0.1. 
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Table 3-7. Estimates for Treatment Effects on Total Milk Production (Mg/ha) and corn silage production in the harvested rye 
(RF) treatment.  
 Total Milk Production in RF Treatment Corn Silage Production in RF Treatment 
 Mean Function Std. Dev. Function Mean Function Std. Dev. Function 
Variable Estimate Std. Err. Estimate Std. Err. Estimate Std. Err. Estimate Std. Err. 
Intercept 19.83 *** 0.97 2.42 *** 0.70 7.45 *** 0.46 1.24 *** 0.33 
N100 2.70 * 1.07 1.04  0.74 1.22 * 0.53 0.07  0.40 
N160 2.01 ** 0.71 -0.41  0.56 1.35 *** 0.41 -0.50 . 0.30 
2013 11.53 *** 1.12 -0.44  0.76 9.24 *** 0.55 0.17  0.37 
2014 14.02 *** 1.17 -0.03  0.82 10.98 *** 0.50 0.05  0.35 
2015 19.01 *** 0.98 -1.08  0.71 12.68 *** 0.43 -0.34  0.37 
2016 16.01 *** 1.39 0.43  0.95 9.08 *** 0.62 0.30  0.41 
ℓ"($̂, '(): -25.94 -59.30 

Significance level: *** = 0.001; ** = 0.01; * = 0.05; · = 0.1.  
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Table 3-8. Annual RUSLE2 and PI values for each cover treatment.  

Year PI  NC RC RF 

2012 
Particulate 2.2 1.3 1.3 

Soluble 1.0 0.8 0.8 
Total 3.2 2.0 2.0 

2013 
Particulate 2.3 1.4 1.4 

Soluble 1.3 1.0 1.0 
Total 3.6 2.3 2.3 

2014 
Particulate 2.3 1.4 1.4 

Soluble 1.3 1.0 1.0 
Total 3.6 2.4 2.4 

2015 
Particulate 2.4 1.4 1.4 

Soluble 1.4 1.1 1.1 
Total 3.7 2.5 2.5 

2016 
Particulate 2.2 1.3 1.3 

Soluble 1.2 0.9 0.9 
Total 3.4 2.2 2.2 

AVG 
Particulate 2.3 1.4 1.4 

Soluble 1.2 1.0 1.0 
Total 3.5 2.3 2.3 

RUSLE2 
(t/ac/yr) 

1.9 1.1 1.1 

 
 

Table 3-9. Added treatment costs ($/ha) for cover and nitrogen treatments 
by year with averages across years and across rates. 

  !" −!$%  
Year Tmt(&) N60 N100 N160 AVG 

2012 RC 175 184 178 179 
RF 509 508 517 511 

2013 RC 187 152 149 163 
RF 438 422 444 435 

2014 RC 163 196 183 181 
RF 424 426 397 416 

2015 RC 187 178 123 163 
RF 457 446 434 446 

2016 RC 108 163 167 146 
RF 519 521 547 529 

AVG 
RC 164 175 160 166 
RF 470 465 468 467 
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Table 3-10. Breakeven probabilities for cover treatments in each year. The 
added cost used was the treatment cost averaged across nitrogen rates. 
  (!" −!$%)/* 

(Mg/ha) 
+[-" − -$%] 

(Mg/ha) /" BEP 
Year Tmt(&) 

2012 RC 0.42 0.98 0.12 1.00 
RF 1.19 -1.88 0.44 0.00 

2013 RC 0.38 -1.20 0.35 0.00 
RF 1.01 -0.35 0.15 0.00 

2014 RC 0.42 2.56 0.94 0.99 
RF 0.97 -0.19 3.40 0.37 

2015 RC 0.38 2.88 1.43 0.96 
RF 1.04 -1.25 2.90 0.22 

2016 RC 0.34 -1.15 0.89 0.05 
RF 1.23 5.87 0.03 1.00 

 
 

Table 3-11. Quartile thresholds of added profits for RC and RF treatments 
calculated from breakeven probabilities in table 3-10.  

  01 Percentiles ($/ha) 
Year Tmt(&) 25% 50% 75% 

2012 RC 385.09 420.88 456.67  
RF -935.73 -809.24 -682.75 

2013 RC -615.90 -513.98 -412.07 
RF -194.01 -150.34 -106.66 

2014 RC 827.37 1098.51 1369.65 
RF -1069.71 -83.49 902.74 

2015 RC 820.56 1236.08 1651.61 
RF -1381.24 -538.90 303.43 

2016 RC -749.47 -492.66 -235.85 
RF 2514.03 2522.15 2530.26 

AVG	 RC	 133.53	 349.77	 566.00	
RF -213.33 188.04 589.40 
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Chapter 4. Concluding Remarks 

The successful use of composite indicators will require well-coordinated development and 

implementation between farmers, researchers, ag-businesses, and policy makers. Each of these 

stakeholders has a different responsibility to achieve this end. The development of the three 

example composite indicators: Milk per Acre, the phosphorus index, and RUSLE2 demonstrate a 

working example of composite indicators that can be calculated using available farm 

management information systems (FMIS) and used to help farmers balance economic and 

environmental factors in farm management decision-making.  

 

Researchers need to focus on the construction of composite indicators and how they can be 

utilized. As RUSLE2 and Milk per Acre illustrate, indicators require continuous effort with 

regular updates as knowledge of the agroecosystem increases.  This effort includes updated 

selection and recalibration of empirical models used in the construction of composite 

indicators. Additionally, as understanding of the agroecosystem and data access improve, new 

composite indicators should be developed to continually improve the relevant information 

accessible to farmers.  This process will require coordination with farmers to understand where 

in the management process the deficiencies in information access are, what data need to be 

collected to better understand these deficiencies, and how these data can be transformed into 

a small number of easily interpretable metrics.  Additionally, researchers must work to improve 

holistic agroecosystem models to incorporate these metrics and expand the feature space of 

the decision-making processes for farmers.  
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Developers of FMIS and precision ag (PA) technologies need to integrate the composite 

indicators and their encompassing models into software that can be accessed and executed by 

the farmer. This integration will require coordination with researchers to optimize software 

performance and coordination with farmers to ensure efficiently operational user interfaces. 

RUSLE2 provides a good example of creating an indicator and accompanying software that is 

easily integrated into FMIS, as demonstrated by SNAPPlus.  Since the future of the market for 

FMIS is uncertain, this approach allows developers of composite indicators to increase 

accessibility to a variety of platforms available to farmers. In general, working to create more 

comprehensive software to reduce the complexities of farm management is essential.  

 

Researchers and developers must also work to improve aggregated analysis of crop conditions 

and expectations. Analyses at regional levels have the potential to prevent potentially severe 

run-off events or pest infestations that individual farmers cannot address on their own. 

Aggregated state information of production systems can also help reduce the market frictions 

driven by the high uncertainty of crop performance. However, concerns of user privacy and 

data security must be addressed by developers to ensure the safety and trust of the farmers.   

 

Farmers and crop consultants must provide constant feedback to help ensure that the 

construction and development of composite indicators in FMIS are well-suited to improve their 

management. Their coordination with researchers and extension is required to determine 

where their decision-making process can be improved and coordination with developers to 

ensure that the software will efficiently improve farm management. Additionally, composite 
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indicator and FMIS maintenance will be a constant and dynamic process that requires farmer 

feedback at every step. This feedback must address issues of the indicator’s usability, 

effectiveness, and efficiency.  

 

Policy makers need to help coordinate ecosystem service management at regional and national 

levels. Regional and national coordination will require aggregating data from FMIS and external 

sources to determine where there are environmental externalities and how to promote positive 

ecosystem services while averting negative externalities. Coordination with researchers is also 

necessary to determine the best way to allocate payments for ecosystem services to maximize 

their preservation. 

 

The effective use of composite indicators will clearly require extensive coordination across 

agricultural stakeholders. It may seem daunting, but examples of this coordination already exist 

as outlined by this paper. To summarize, policy makers created the NPM 590 standard 

requirements to address aggregated negative externalities of agriculture such as nutrient 

loading in surface and ground waters. Adherence to NPM 590 is required for agricultural tax 

credits and can be fulfilled with the FMIS, SNAPPlus. SNAPPlus records cultural and fertilizer 

practices to calculate the composite indicators RUSLE2 and the phosphorus index. Farmers can 

utilize these indicators to incorporate nonmarketable ecosystem services into their decision-

making process.  
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Composite indicators implemented through FMIS provide a powerful framework for reducing 

negative environmental externalities by improved information access in the on-farm decision 

making process. The usefulness and effectiveness of these indicators will rely on a well-

coordinated effort between agricultural stakeholders. In the age of computerization and 

mechanization, composite indicators will be essential to the abatement of environmental 

degradation and anthropogenic climate change.  
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