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CHAPTER 1: INHERENT SOIL PROPERTIES AND BIOLOGICAL SOIL HEALTH 

ABSTRACT 

Besides soil texture and pH, inherent soil properties have been explored minimally 

as determinants of soil health as they are unmanageable constraints under relevant 

timescales. However, identifying inherent soil properties that are the most influential to soil 

health is necessary for developing regionally specific critical values for assessments. Publicly 

accessible soil information from the Natural Resources Conservation Service (NRCS) Web 

Soil Survey is a relatively untapped resource for determining potential co-variates for soil 

health assessment. We used soils of similar texture collected from 124 fields across 16 

certified organic grain farms in the Driftless Region of Wisconsin to analyze for effects of 

NRCS soil properties on soil health. The main pools of carbon and nitrogen (soil organic 

matter (SOM), total organic carbon (TOC), and total nitrogen (TN)), along with indicators of 

biological soil health (permanganate oxidizable carbon (POXC), mineralizable carbon (minC), 

potentially mineralizable nitrogen (PMN), and autoclaved-citrate extractable protein (ACE)) 

were measured. Simple linear regression and analysis of variance were utilized to determine 

effects of soil properties and indices on biological soil health indicators. The most influential 

NRCS soil properties and indices differed by the elemental cycle and process associated with 

the indicator. Differences in soil taxonomy, bulk density, soil surface sealing, whole soil 

erodibility, the fragile soil index, and organic matter depletion affected multiple indicators. 

Soil water properties were solely influential for TOC with wetter soils containing higher SOM 

and TOC values. These properties deserve further exploration as potential co-variates within 
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larger regional and national datasets for developing soil health assessments. Inclusion of 

identified inherent soil properties as co-variates is critical for comparing soils among 

relevant peers to properly inform management decisions. 

INTRODUCTION 

Soil performs a multitude of functions in agricultural systems that affect the 

productivity of our lands for food, feed and fiber as well as their capacity to mitigate climate 

change and environmental degradation. An increase in public awareness of soil’s potential 

to provision services for the betterment of humanity has heightened interest in soil health. 

According to the United States Department of Agriculture-Natural Resources Conservation 

Service (USDA-NRCS), soil health is “the capacity of the soil to function as a vital living 

ecosystem that supports plants, animals, and humans” (Stott, 2019). This all-encompassing 

definition allows soil health assessment to adjust to different societal contexts based on 

societal priorities, values, and needs. For example, the soil functions required for 

engineering purposes is much different than those for agricultural production. It is 

important to incorporate these contexts in soil health assessment for optimal decision-

making.  

Primarily, three components of soil health are measured to assess soil functioning: 

soil biological, physical, and chemical properties. Soil chemical and physical properties have 

been studied much longer than biological properties; their measurements are well 

developed while researchers are still debating on how to measure biological properties. 

Recently, indirect measures of soil functions, known as indicators, are receiving strong 
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support due to their high application potential outside of research. Indicators being 

developed for soil health assessment based on their ability to inform land management for 

farmers, natural area managers, among others. Generally, a strong indicator is cost-

effective, easy to use, sensitive to management, and can timely deliver information to 

implement best management practices relevant to that soil (Morrow et al., 2016; Stott, 

2019). A combination of indicators is necessary to evaluate biological soil health. For 

agricultural production, major attention to the biological processes involved in carbon (C) 

and nitrogen (N) cycling is needed for assessing nutrient management. Different soil health 

measurement packages have been proposed by the Soil Health Institute, USDA’s Soil 

Management Assessment Framework (SMAF), and Cornell’s Comprehensive Assessment of 

Soil Health (CASH) (Schindelbeck et al., 2016; Stott, 2019). Determination of the most 

informative indicators for decision-making is key to the development of benchmarks for 

regional and national soil health assessments. In 2019, NRCS released indicator 

recommendations and standardized protocols for measuring C and N cycling functions. Our 

study utilized several indicators that evaluate C and N cycling components vital to 

agricultural production as well as the provision of crucial ecosystem services such as the 

protection of water quality through nutrient retention. 

For evaluating organic matter cycling and C sequestration, measurement of soil total 

organic carbon (TOC) via dry combustion is recommended and can be modified for use on 

alkaline soils (Sherrod et al., 2002; Harris et al., 2001). Soil TOC content provides 

information on a multitude of soil functions such as water-holding capacity and nutrient 
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retention, but it does not provide information on the bioavailability of C and N within the 

organic matter (Stott, 2019). In addition, the effect of management on TOC content is 

undetectable for three or more years, and its rate of change is highly affected by climate 

(Sikora et al., 1996). Thus, it is necessary to include other measures that are more sensitive 

to management and can evaluate the quality and availability of organic matter constituents 

as it relates to important biological functions. 

  Bioavailability of C and N can be evaluated through chemical extraction or biological 

incubation. Permanganate oxidizable C (POXC) uses 0.02 M KMnO4 to chemically oxidize the 

most readily available fraction of soil TOC. Since soil microorganisms use oxidative enzymes 

to decompose the organic matter available to them, chemical oxidation mimics biological 

oxidation (Loginow et al., 1987). This notion is well-supported as POXC is positively 

correlated with many biological properties such as TOC (Bongiorno et al., 2019; Morrow et 

al., 2016; Culman et al., 2012; Plaza-Bonilla et al., 2014; Weil et al., 2003), particulate 

organic C (Bongiorno et al., 2019; Culman et al., 2012), microbial biomass C (Bongiorno et al. 

2019; Culman et al., 2012), soil respiration (Bongiorno et al., 2019; Weil et al., 2003), soluble 

carbohydrates (Weil et al., 2003) and substrate-induced respiration (Weil et al., 2003). 

Despite its connection to biological activity and properties, Romero et al. (2018) determined 

that C outside of the readily bioavailable C pool is detected with POXC. In fact, POXC is more 

closely associated with a highly processed fraction of TOC as well as organic matter building 

and stabilization (Culman et al., 2012; Hurisso et al., 2016). Regardless of the evolving 

interpretation on POXC, it is considered a useful tool for informing soil organic matter 
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management and fulfills many of the criteria for a robust soil health indicator (Stott, 2019; 

Morrow et al., 2016; Fine et al., 2017). 

 Potentially mineralizable C (minC) is an incubation method that measures soil 

respiration via CO2 evolution after rehydrating air-dried soil to ~50% water-filled pore space 

(WFPS). Maximum minC values are obtained when WFPS is between 53 to 66% 

(Franzluebbers, 1999). As a soil health indicator, it represents general microbial activity but 

is associated with nutrient bioavailability (Hurisso et al. 2016). Since short-term C 

mineralization is more representative of growing conditions and avoids substrate depletion, 

it is the preferred method over long-term C mineralization (Stott, 2019). Schindelbeck et al. 

(2016) recommends a 4-day incubation to minimize variation between replicates. However, 

24-hr incubations have been shown to be as indicative of microbial activity as 24-day 

incubations and are more applicable to high-throughput commercial lab settings (Haney et 

al., 2004). 

 Potentially mineralizable N (PMN) is another incubation method that represents the 

capacity of the soil microbiome to provide plant-available N through mineralization. It can 

be measured under aerobic or anaerobic conditions. Anaerobic conditions simplify PMN 

measurement by preventing nitrification so that ammonium is the only mineralization 

product as well as circumventing management of soil water content during incubations 

(Drinkwater et al., 1996). Potentially mineralizable N is a well-established measurement but 

has limited potential for high-throughput commercial labs due to the week-long or longer 
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duration of its incubations. However, Hurisso et al. (2018b) suggested a chemical extraction 

for soil protein as an indicator of bioavailable N. 

 Autoclaved-citrate extractable protein (ACE) measures soil protein through 

adaptation of a chemical extraction for glomalin-related soil protein. Rosier et al. (2006) and 

Hurisso et al. (2018b) demonstrated that this method captures more than arbuscular 

mycorrhizal fungi protein (glomalin), but instead captures a range of proteins. Since protein 

is the largest organic N fraction in soil and depolymerization of protein to amino acids is the 

rate-limiting step for N mineralization, it is a viable proxy for bioavailable N (Nannipieri & 

Eldor, 2009; Schimel & Bennet, 2004; Hurisso et al., 2018b). 

 Research has utilized long-term trials to develop an understanding of soil health 

threshold values and the effects of management on these indicators across geospatial 

regions and edaphic conditions (e.g. Culman et al., 2012; Hurisso et al., 2016; Diederich et 

al., 2019; Norris et al., 2020). However, the effect of soil properties beyond pH and texture 

have been given less consideration regardless of public access to NRCS soil data for greater 

than 95% of U.S. counties (Soil Survey Staff, n.d.). Despite accounting for soil textural 

differences in soil health assessment, there are regional differences in mean indicator 

values (Moebius-Clune et al., 2016). Subsequently, soil health scoring functions were 

adjusted to convey these differences. Identifying unaccounted sources of variation in 

regional soil health values may improve the efficacy of soil health assessment through 

improving or adding co-variates. 
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As part of its mission to “produce and deliver scientifically based soil information to 

help society understand, value, and wisely manage global resources,” the NRCS Web Soil 

Survey (WSS) provides publicly accessible information for the spatial distribution of U.S. 

soils, and their properties, suitabilities and limitations (USDA-NRCS, 2019). Field 

observations and mapping are utilized to identify patterns in soil distributions to generate 

soil maps. Distinct areas defined by their soils in a survey area are regarded as map units 

and have associated soil information. Due to the soil survey mapping scale, soil property 

and index information of map units are not site-specific, but are instead representative of 

typical soil profiles and laboratory measurements of map units. The scale of mapping along 

with map unit design considerations are the most likely causes of error on soil maps (Soil 

Science Division Staff, 2017). Although the soil information is not a direct representation of 

site conditions, exploration of NRCS soil properties and indices effects on soil health 

indicator values may discover novel connections or influential factors for potential co-

variates in soil health assessment.  

Not all soils have the same intrinsic potential for soil health. The most influential soil 

properties can be used to differentiate soils to ensure comparison among their peers. Soil 

health assessments that include these factors as co-variates would provide better 

interpretation of soil health status and better inform management decisions. The need for 

co-variates to account for inherent differences in soil health may depend on whether an 

assessment is national or regional. Understanding underlying soil health variation within a 

region would provide first-indications if co-variates are essential for regional-based soil 
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health assessments. Overall, this research aims to identify key determinants of soil health 

for use as potential co-variates in assessment through the evaluation of inherent soil 

property effects. The specific objectives of this study are to: 1) evaluate the relationship 

between NRCS soil information with soil health indicators (SOM, TOC, TN, POXC, minC, PMN 

and ACE) and 2) to evaluate the relationships among soil health indicators.  

Inherent soil properties disproportionately affect soil function as they are derived as 

a result of soil formation. We expect dominant soil properties, such as pH, texture, drainage 

class, and clay content, to effect soil health as they have greater effects on the dynamic 

properties of soil (temperature and moisture content) and on the soil’s capacity to store 

organic matter (Brady and Weil, 2010). Since soils are classified by primarily their dominant 

soil properties (Soil Survey Staff, 1999), it is expected that soils with more similar 

classifications (i.e. orders, suborders, great groups, subgroups, and soil series) will have 

more similar soil health values than dissimilar classifications. In addition, we hypothesize 

that TOC, POXC and minC will have positive relationships to each other, and that ACE and 

PMN will have a positive relationship. 

MATERIALS AND METHODS 

Field Descriptions and Soil Sampling 

Soil samples were collected from 124 fields of 16 certified organic grain farms in the 

southwest Driftless Region of Wisconsin (Figure 1.1). Farms were selected from a list of 

Wisconsin farms that are members of the organic cooperative Organic Valley based on the 
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Figure 1.1. Map of 2018 and 2019 field sites. Each color represents a field managed by the same farmer.
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following criteria: 1) grain production was a major part of their farm operations, 2) farms 

were based in the Driftless Region of Wisconsin, and 3) willingness to participate in this 

research. Locations were limited to the Driftless Region because of the high density of 

organic grain farms in that region and to minimize the variation in inherent soil properties 

and climate. Fields were located in the Wisconsin counties of Grant (n = 73), Lafayette (n = 

23), Iowa (n = 17), and Green (n = 9), and the Illinois county of Jo Daviess (n = 2). 

 Soil samples were collected between 18 May to 2 July in 2018 (n = 59) and 22 April 

to 13 May in 2019 (n = 65), prior to planting of the next crop. Soil samples were solely 

collected in fields where the previous year’s crop was corn. For each field, ten soil cores 

were obtained in a circular array with a radius of approximately 2 meters. GPS coordinates 

noted the center of the sampling circle. The soil cores were taken from a depth of 0 to 15 

cm by a probe with an internal diameter of 2.0 cm, and then were composited and well-

mixed. Upon immediate return from field locations, composited samples were air-dried 

using a force-air drier at 32 °C for 3 days, then ground to pass through a 1-mm sieve and 

stored at room temperature until analysis. 

Soil Analysis 

 According to procedures set and standardized by the North Central Regional 

Extension & Research Activity (2015), air-dried soils were analyzed for soil pH, reserve 

acidity, and SOM. Soil pH was measured using a 1:1 ratio of soil to deionized water. For soils 

with a pH ≤ to 6.5, reserve acidity was measured using Sikora buffer (Sikora, 2006). Soil was 
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heated for 2 hours at 360 °C and the mass lost on ignition was used to calculate SOM 

content.  

Soil total C and N content were obtained through dry combustion of 8–10 mg of soil 

in a tin capsule, where the soil was previously ground to a flour-like consistency. Total C and 

N were measured with the Flash EA 1112CN Automatic Elemental Analyzer (Thermo 

Finnigan, Milan, Italy). If the coefficient of variation (CV) of a soil sample’s total N exceeded 

20% and N was between 0.1 to 0.2 %, the mass of the soil sample was raised to 24-25 mg in 

order to improve detection. Presence of soil inorganic C was determined visually from 

effervescence using 5% HCl. Soils without inorganic C were assumed to have TOC values 

equivalent to measured total C values. For soils testing positive for inorganic C, TOC was 

obtained using HCl fumigation to remove inorganic C prior to dry combustion (Harris et al. 

2001). For both C and N cycling, a chemical extraction and incubation method were utilized 

as indicators for important soil processes of each element.  

Permanganate oxidizable C was measured according to Culman et al. (2012), a 

modification of Weil et al. (2003). In triplicate, 2.5 ± 0.01 g of soil were combined in a 50 mL 

polypropylene centrifuge tube with 18 mL of deionized water and 2 mL of 0.2 M KMnO4. 

Upon addition, samples were immediately capped and shaken at 240 rpm for 2 minutes, 

then uncapped and placed in a dark space to settle for 10 minutes. The supernatant was 

diluted 100-fold by transferring 0.5 mL of supernatant to 49.5 mL of deionized water. In 

triplicate, 275 μL of the diluted supernatant was pipetted into a 96-cell plate, along with 

three sets of a positive control (silt loam soil with established POXC values), deionized water 
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blank, and standard curve (5, 10, 15 and 20 mM KMnO4). A spectrophotometer (Omega, 

BMG LABTECH GmbH, Ortenberg, Germany) measured the absorbance of each cell at 

wavelength 550 nm. POXC was calculated using the following equation:  

POXC (mg C kg-1 soil) = [0.02 mol L-1 – (a + b(Abs))] * (9000 mg C mol-1) 

x (0.02 L solution x Wt-1)                [Eq. 1] 

where 0.02 mol L-1 is the initial concentration of KMnO4 solution; a is the intercept of the 

standard curve; b is the slope of the standard curve; Abs is the absorbance of the unknown 

soil sample; 9000 mg is the amount of C oxidized by 1 mol of MnO4-; 0.02 L is the volume of 

KMnO4 solution reacted with soil; and Wt is the kg of air-dried soil utilized in the reaction. 

 Mineralizable C was obtained using a modification of the procedures described by 

Franzluebbers et al. (2000) and Haney et al. (2004). In triplicate, 10 ± 0.01 g of soil was 

placed into a 59-mL plastic dish and carefully transferred to a 0.932-L glass jar. In a fume 

hood, deionized water was pipetted onto each soil sample to achieve 60% water-filled pore 

space (WFPS). A WFPS of 60% was selected as it is within the range of moisture content that 

maximizes microbial respiration while mitigating the risk of observing the steep decline that 

occurs below 50% WFPS (Franzluebbers et al., 1999). Water-filled pore space was calculated 

using an estimated bulk density as well as an assumed particle density of 2.65 g mL-1, the 

density of quartz (Eq.2). 

60% WFPS = (1 - (bulk density / 2.65 g mL-1)) x (0.6) x (10 g)           [Eq. 2] 
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Upon wetting, the jars were capped tightly and incubated at 25 °C for 24 hours. An infrared 

gas analyzer (LiCor Li-820, LI-COR Biosciences, Lincoln, NE, USA) with a flow-through reactor 

was used to measure the concentration of CO2 produced in each jar. Incubated along the 

soil samples was an empty jar containing solely a plastic dish, and another jar containing a 

silt loam soil with established minC value; the empty jar was used to blank the analyzer to 

control for the atmospheric CO2 concentrations within the fume hood while the known 

minC soil was used as a positive control. Mineralizable C was calculated using the following 

equation: 

minC = [(Cv x M x P) / (R x T)* (H/Wt)] *(0.001/0.0001)           [Eq. 3] 

where Cv is the average concentration of CO2 in ppm; M is the molecular weight of C (12 μg/ 

μmol); P is the barometric pressure (1 atm); R is universal gas constant (0.0820575 L· atm · 

°K · mole); T is the incubation temp in °K (298.15); H is the volume of the incubation 

chamber (0.932 L); and Wt is the mass of the soil used in the incubation (10 g). The volume 

of the connecting lines attached to the Li-Cor Li-820 was calculated and not included in the 

total volume of the incubation chamber as its volume was negligible. 

 Potentially mineralizable N (PMN) was assessed using a 7-day, 40 °C anaerobic 

incubation according to the methods of Drinkwater et al. (1996). Initial soil ammonium-N 

concentration was determined from the extraction of 5 ± 0.01 g of soil with 40 mL of 2 M 

KCl while shaking for 1 hour at 240 rpm. Following extraction, initial samples were 

centrifuged at 1320 rpm for 5 minutes and supernatant was filtered through 2.7 µm filter 

paper into 30 mL scintillation vials and immediately frozen and stored at -20 °C. In duplicate, 
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7-day ammonium-N was determined from the incubation of 5 ± 0.01 g of soil with 10 mL of 

deionized water at 40 °C. Following the incubation, samples were immediately extracted by 

adding 30 mL of 2.5 M KCl and shaking for 1 hour at 240 rpm. Supernatant was obtained, 

filtered, and stored to identical methods for initial ammonium-N samples. N mineralization 

was determined from ammonium-N concentration of thawed extracts measured using a 

Lachat Flow Injection System. Potentially mineralizable N was calculated as the difference in 

average ammonium-N concentration between the two incubated samples and initial 

sample. 

 Autoclaved-citrate extractable protein (ACE) was measured according to the 

procedures of Hurisso et al. (2018b). In triplicate, 3 ± 0.01 g of soil was combined with 24 

mL of 0.02 M sodium citrate pH 7 solution in a glass screw-top tube, and then shaken at 180 

rpm for 5 minutes. Following shaking, tubes were autoclaved at 121 °C for 30 minutes with 

the caps loosened and left atop of tubes. Tubes were then allowed to cool before 

resuspending via shaking for 3 minutes at 180 rpm. Into a 2.2 mL microcentrifuge tube, 1.75 

mL of extract was transferred and then centrifuged at 10,000x g for 3 minutes. Protein 

content of the supernatant was quantified with the bicinchoninic acid assay using bovine 

serum albumin (BSA) as a standard (0, 125, 250, 500, 750, 1500, and 2000 µg mL-1). 

Dataset Construction & Statistical Analysis 

Publicly available soil property and indices data for each field was obtained and 

aggregated from the NRCS Soil Survey Geographic Database (SSURGO) via the Web Soil 

Survey (WSS) (Soil Survey Staff, n.d.). The soil map was used to determine the soil series and 
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its map unit code for each sampling location based on soil sample georeferenced 

coordinates. Using the map unit code in Soil Data Explorer, soil properties and qualities as 

well as soil suitabilities and limitations data was collected with cropland as a land use filter 

to avoid incorporating data for other land uses. Depth of A horizon and landform position 

information were added from the map unit description for each soil series. Tables 1.1 and 

1.2 are a truncated list of the data collected including only soil data explorer subsections 

pertinent to crop production, soil health, soil classification, and inherent soil properties. 

From this list, soil properties and indices were selected for analysis based on the following 

criteria: 1) they are related to grain and forage systems, 2) they are developed for 

Wisconsin or apply to this region, and 3) they do not capture information for climate and/or 

engineering purposes as these are not relevant to the localized area and land use 

considerations. The remaining soil properties and indices were aggregated to construct a 

dataset to evaluate the relationships between NRCS soil information and soil heath 

indicators (Tables 1.3 - 1.5). 

 Descriptive statistics were used to explore the distribution of NRCS and response 

variables (SOM, TOC, TN, POXC, minC, PMN, and ACE). The describe function from the Psych 

package in R was used to perform univariate statistics, such as mean, median, skewness, 

etc., on both continuous NRCS and response variables. Categorical NRCS variable 

distributions were evaluated from the number of observations and percent of total 

observations per category. Categories containing less than three field observations within a 

categorical variable were excluded from analysis because meaningful standard deviations 
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cannot be computed for n < 3. To exclude NRCS variables from analysis that did not provide 

sufficient information due to lack of or excess variation, NRCS soil properties and indices 

were removed from the dataset if the following criteria were met: 1) <80% of fields had a 

value reported, 2) >90% of fields belong to a single category, and/or 3) categorical variables 

contained greater than ten categories that were highly unbalanced. NRCS variables that 

were computed by applying a factor to another NRCS variable were excluded since they 

would supply redundant information and exhibit high collinearity. 

Of the remaining NRCS variables, the effect of individual inherent soil properties and 

indices on soil health indicators was assessed in R using analysis of variance (ANOVA) with a 

Fisher’s least significant difference (LSD) test for categorical explanatory variables and 

simple linear regression for continuous explanatory variables (α= 0.05). The aov and 

summary functions were used for ANOVA while lm and summary functions were used for 

simple linear regression. Simple linear regression assumptions of linearity, constant 

variance, and normality were evaluated using residuals versus fitted values plots and Q-Q 

plots. 

RESULTS AND DISCUSSION 

Relationships Between Indicators  

Soil health indicator values were within the range of those recorded across diverse cropping 

systems and geographic regions of the United States (e.g. Drinkwater et al., 1995; Marinari 

et al., 2006; Culman et al., 2012; Hurisso et al., 2016; Fine et al., 2017). Mean indicator  
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Table 1.1. Soil information from the suitabilities and limitations, and map unit description 
sections of the NRCS WSS. 

Section Subsection Soil Information 

Suitabilities and 
Limitations 

Land 
Classifications 

Conservation Tree and Shrub Group 

Farmland Classification 

Hydric Rating by Map Unit 

Irrigated Capability Class 

Irrigated Capability Subclass 

National Commodity Crop Productivity Index (NCCPI) 

NCCPI (Corn) 

NCCPI (Small Grain) 

NCCPI (Soybean) 

Non-Irrigated Capability Class 

Non-Irrigated Capability Subclass 

Order of Soil Survey 

Soil Moisture Class 

Soil Moisture Subclass 

Soil Taxonomy Classification 

Soil Temperature Regime 

Soil Health 

Agricultural Organic Soil Subsidence 

Farm and Garden Composting Facility - Surface 

Fragile Soil Index 

Organic Matter Depletion 

Soil Surface Sealing 

Soil Susceptibility to Compaction 

Suitability for Aerobic Soil Organisms 

Surface Salt Concentration 

Vegetative 
Productivity 

American Wine Grape Varieties Site Desirability  

Wisconsin Commodity Crop Productivity Index 

Crop Productivity Index 

Hybrid Wine Grape Varieties Site Desirability 

Iowa Corn Suitability Rating (CSR2) 

Minnesota Crop Productivity Index 

Vinifera Wine Grape Site Desirability 

Yields of Irrigated Crops 

Yields of Non-Irrigated Crops 

Map Unit 
Description 

Typical Profile Depth of A Horizon 

Setting 
Slope Position (2D Landform Position) 

3D Landform Position 

NRCS = Natural Resources Conservation Service; WSS = Web Soil Survey
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Table 1.2. Soil information from the soil properties and qualities section of the NRCS WSS.

Subsection Soil Information 

Chemical 
Properties 

Calcium Carbonate 
Cation-Exchange Capacity (CEC) 
Effective Cation-Exchange Capacity 
Electrical Conductivity (EC) 
Gypsum 
pH 
Sodium Adsorption Ratio (SAR) 

Physical 
Properties 

Available Water Storage 
Available Water Supply 
Bulk Density 
Linear Extensiblity 
Liquid Limit 
Organic Matter 
Percent Clay 
Percent Sand 
Percent Silt 
Plasticity Index 
Saturated Hydraulic Conductivity 
Saturated Hydraulic Conductivity 
Standard Classes 
Surface Texture 
Water Content at 1500 and 3 kPa 

Water 
Features 

Depth to Water Table 
Flooding Frequency Class 
Ponding Frequency Class 

Subsection Soil Information 

Erosion 
Factors 

K Factor, Rock Free (Erodibility Factor) 
K Factor, Whole Soil (Erodibility Factor) 
T Factor (Tolerable Soil Loss) 
Wind Erodibility Group 
Wind Erodibility Index 

Soil Health 
Properties 

Available Water Capacity (AWC) 
Bulk Density 
Sodium Adsorption Ratio (SAR) 
pH 
Surface Texture 

Soil 
Quality 

and 
Features 

AASHTO Group Classifications 
AASHTO Group Index 
Depth to a Selected Soil Restrictive Layer 
Depth to Any Soil Restrictive Layer 
Drainage Class 
Frost Action 
Frost-Free Days 
Hydrologic Group 
Map Unit Name 
Parent Material Name 
Representative Slope 
Soil Slipping Potential 
Unified Soil Classification 

AASHTO = American Association of State Highway Transportation Officials; 
NRCS = Natural Resources Conservation Service; WSS = Web Soil Survey
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Table 1.3. Univariate statistics for NRCS continuous variables. 

Type Variable min Q0.25 mean median Q0.75 max range sd cv (%) skewness kurtosis 

Properties 

pH* 5.8 6.8 7.0 7.1 7.3 7.7 1.9 0.4 5.0 -0.76 0.60 
Clay (%) 15.0 19.5 21.7 21.0 24.0 31.0 16.0 3.6 16.6 0.35 0.18 
Silt (%) 62.0 67.6 70.8 68.9 75.0 77.0 15.0 3.9 5.5 -0.08 -1.09 
Sand (%) 4.0 4.0 7.6 6.9 9.7 14.0 10.0 3.2 42.0 0.48 -1.01 
Bulk Density (g cm-3) 1.23 1.36 1.39 1.40 1.42 1.60 0.37 0.07 4.7 -0.01 1.82 
CEC (cmolc kg-1) 12.4 16.7 19.2 17.8 21.7 33.0 20.6 4.1 21.4 1.71 3.65 
Depth of A Horizon (in) 6 7 9 8 10 18 12 2 28.7 1.35 1.48 
Representative Slope (%) 1.5 4.0 8.2 9.0 9.0 16.0 14.5 3.6 43.9 0.47 -0.08 
Water Content at 1500 kPa (%) 10.3 13.5 14.9 14.5 15.3 20.6 10.3 2.4 16.1 0.47 -0.33 
Water Content at 3 kPa (%) 25.3 28.7 29.6 29.4 30.0 32.9 7.6 1.7 5.7 0.11 -0.44 

Indices 
NCCPI (Small Grain) 0.246 0.484 0.518 0.510 0.540 0.668 0.422 0.060 11.6 -0.27 2.51 
NCCPI (Corn) 0.474 0.703 0.719 0.743 0.796 0.899 0.425 0.106 14.7 -0.82 -0.24 
NCCPI (Soybean) 0.346 0.557 0.604 0.614 0.663 0.880 0.534 0.126 20.8 -0.60 -0.18 

*pH was measured from field soil samples and not retrieved from WSS 
NRCS = Natural Resources Conservation Service; CEC = Cation-exchange capacity at pH 7; NCCPI = National Commodity Crop Productivity Index; 
min = minimum; Q0.25 = 1st quartile; Q0.75 = 3rd quartile; sd = standard deviation; cv = coefficient of variation 
n = 123 for all NRCS variables 
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Table 1.4. NRCS soil property categorical variables and their distribution.

Fields (n)  Order 

79  Alfisols 

3  Entisols 

41  Mollisols 
   

Fields (n)  Suborder 

79  Udalfs 

3  Fluvents 

41  Udolls 
   

Fields (n)  Great Group 

79  Hapludalfs 

3  Udifluvents 

34  Argiudolls 

7  Hapludolls 
   

Fields (n)  Subgroup 

70  Typic Hapludalfs 

9  Mollic Hapludalfs 

3  Aquic Udifluvents 

34  Typic Argiudolls 

6  Aquic Hapludolls 

2  No Data 
   

Fields (n)  Soil Series 

3  Atterberry-Downs silt loams 

10  Dodgeville silt loam 

3  Dodgeville soils 

6  Downs silt loam 

34  Fayette silt loam 

6  Muscatine silt loam 

3  Newglarus Complex 

14  Newglarus silt loam 

12  Palsgrove silt loam 

6  Seaton silt loam 

18  Tama silt loam 

8  No Data 
   

Fields (n)  Texture 

120  silt loam 

3  silty clay loam 

Fields (n)  Slope Position 

44  Summit; Summit, shoulder; 

Summit, shoulder, backslope 

59 
 

Shoulder; Shoulder, 

backslope; Shoulder, summit; 

Shoulder, toeslope 

12  Backslope; Backslope, 

shoulder 

5  Footslope 

3  Toeslope 
   

Fields (n)  3D Landform Position 

68  Interfluve 

29  Interfluve, side slope 

8  Side slope 

4  Base slope 

15  No Data 
   

Fields (n)  Depth to Restrictive Feature 

14 

 

10 to 25 inches to strongly 

contrasting textural 

stratification, 20 to 39 inches 

to lithic bedrock; 10 to 25 

inches to strongly contrasting 

textural stratification 

9 

 

20 to 44 inches to lithic 

bedrock; 20 to 39 inches to 

lithic bedrock; 24 to 48 inches 

to lithic bedrock; 16 to 55 

inches to lithic bedrock 

22 

 

36 to 72 inches to lithic 

bedrock; 39 to 59 inches to 

lithic bedrock; 42 to 60 inches 

to lithic bedrock 

78  More than 80 inches 
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Fields (n)  Parent Material 

65  Loess 

34 

 

Loess over clayey pedisediment 

derived from dolomite; Loess 

 over clayey pedisediment over 

loamy residuum weathered  

from dolomite; Loess over  

brown clayey pedisediment  

over loamy residuum  

weathered from dolomite 

6 
 

Loess over calcareous loess 

over a landscape of residuum 

weathered from clayey shale 

6  Loess over clayey 

pedisediment 

3 

 

Loess over maquoketa 

residuum weathered from 

calcareous shale 

4  Silty or dark slope alluvium 

3 
 

Silty loess over clayey 

pedisediment over residuum 

weathered from dolomite 

3  No Data 

   
Fields (n)  Soil Moisture Subclass 

104  Typic 

9  Aquic 

11  No Data 
   

Fields (n)  Drainage Class 

7  Somewhat poorly drained 

5  Moderately well drained 

111  Well drained 

   

Fields (n)  Flooding Frequency Class 

120  None 

3  Occasional 

   

   

   

   

   

Fields (n)  Depth to Water Table 

7  About 12 to 36", About 24 to 

48 inches 

5  About 48 to 72 inches 

111  More than 80 inches 

   

Fields (n) 
 

Saturated Hydraulic 

Conductivity Class (µm s-1) 

120  Moderately High (1 to 10) 

3  High (10 to 100) 

   

Fields (n)  
Saturated Hydraulic 

Conductivity (µm s-1) 

1  7.7 

7  8 

112  9 

1  9.17 

3  28 

   

Fields (n)  Available Water Storage 

21  Low 

11  Moderate 

81  High 

10  Very High 

   

Fields (n)  Available Water Capacity  

3  20% 

34  21% 

17  22% 

69  23% 

   

NRCS = Natural Resources Conservation 

Service 

All variables have missing data with n=1 

unless otherwise stated. 

Variables with a single category were not 

listed. 
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Table 1.5. NRCS categorical indices and their distribution.

Fields (n)  Farmland Class 

14  Not prime farmland 

70  Farmland of statewide 

importance 

39  
Prime farmland if drained... 

(n= 1), All areas are prime 

farmland (n = 38) 
   

Fields (n)  WICCPI (Corn) 

3  Low inherent productivity 

6 
 

Moderately low inherent 

productivity 

80 
 

Moderate inherent 

productivity 

25 
 

Moderately high inherent 

productivity 

7  High inherent productivity 

3  No Data 
   

Fields (n)  Hydrologic Group 

25  B 

96  C 

3  No Data 
   

Fields (n)  Non-irrigated Capability 

Class 

40  Class 2 

73  Class 3 

9  Class 4 

2  No Data 
   

Fields (n)  Fragile Soil Index 

85  Moderately Fragile 

15  Fragile 

2  No Data 
   

Fields (n)  Wind Erodibility Group 

37  Group 5 

86  Group 6 

   

   

Fields (n)  
Wind Erodibility Index  

(T A-1 yr-1) 

86  48 

37  56 

   

Fields (n)  Run-off Class 

21  Low 

4  Medium 

24  High 

5  Very High 
   

Fields (n)  OM Depletion 

29  Moderate 

94  Moderately High 
 

 
 

Fields (n)  Suitability to Aerobic 

Organisms 

3  Not favorable 

120  Somewhat favorable 
   

Fields (n)  Soil Surface Sealing 

19  Low 

55  Moderate 

49  High 
   

Fields (n)  Tolerable Soil Loss (T A-1) 

21  2 

24  3 

78  5 
 

 
 

Fields (n)  Whole Soil Erodibility 

Factor  

41  0.32, 0.37 

72  0.43 

10  0.49, 0.55 

   
All variables have missing data with n=1 unless 
otherwise stated. 
Variables with a single category were not listed. 
NRCS = Natural Resources Conservation Service; 
WICCPI = Wisconsin Commodity Crop  
Productivity Index 
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values were primarily larger than in previous research, except for minC (Table 1.6). Mean 

minC was one-third of values reported by Hurisso et al. (2016). Mineralizable C is highest in 

the late summer months of June through August (Diederich et al., 2019), thereby the earlier 

sampling dates likely depressed minC values. Even within our study’s sampling period of late 

April to Early July, minC was sensitive to temporal variation as sampling date had a strong 

positive linear relationship (R2 = 0.20) with minC (Table 2.5). Despite spatiotemporal 

variability similar to routine soil tests, direct comparisons of soil health values between 

studies are difficult due to indicator sensitivity to spatiotemporal variability (Hurisso et al., 

2018a). 

The strength of linear relationships varied largely between soil health indicators 

(Figure 1.2). Carbon-related soil health indicators (SOM, TOC, and POXC) had moderately 

strong positive relationships between each other (R2 > 0.54). The exception was minC, 

which had weak positive relationships with all other C-related indicators (R2 < 0.15). 

Similarly, prior research found positive relationships between TOC and POXC while indicator 

relationships with minC were more varied (Culman et al., 2012; Plaza-Bonilla et al., 2014; 

Hurisso et al., 2016; Morrow et al., 2016; Bongiorno et al., 2019). Mineralizable C had a 

positive relationship with TOC in only 7 out of 13 studies in a meta-analysis by Hurisso et al. 

2016. Mineralizable C also differentiated from POXC (R2 = 0.15-0.80) as the indicators 

responded differently based on the management practice utilized. The lack of strong 

relationships between C indicators highlight that they reflect different pools of C and 

provide different information regarding C bioavailability. Multiple C cycling indicators may  
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Table 1.6. Univariate statistics for soil health response variables. 

Variable min Q0.25 mean median Q0.75 max range sd cv (%) skewness kurtosis 

SOM (%) 1.7 3.0 3.3 3.2 3.6 7.0 5.3 0.6 18.2 1.81 10.27 

TOC (mg kg-1) 10000 17400 20200 20000 22400 42200 32200 4220 20.9 1.20 4.97 

TN (mg kg-1) 867 1690 2030 2030 2310 3750 2880 449 22.1 0.44 0.77 

POXC (mg C kg-1) 390 656 726 734 803 1160 768 118 16.3 0.03 1.14 

minC (mg C kg-1 day-1) 54.0 84.4 99.1 95.3 110 154 100 20.7 20.9 0.44 -0.19 

PMN (mg N kg-1) 39.6 77.2 90.8 89.3 102 177 138 20.5 22.5 0.70 1.68 

ACE (mg protein kg-1) 3470 6210 6860 6725 7490 10200 6730 1090 15.9 -0.04 0.67 

SOM = soil organic matter; TOC = total organic carbon; TN = total nitrogen; POXC = permanganate oxidizable carbon; 

minC = mineralizable carbon; PMN = potentially mineralizable nitrogen; ACE = autoclaved-citrate extractable protein; 

min = minimum; Q0.25 = 1st quartile; Q0.75 = 3rd quartile; sd = standard deviation; cv = coefficient of variation 

n = 124 for all response variables.
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Figure 1.2. Linear relationships between soil health indicators and their R-squared value.
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be required in soil health assessment to prioritize management strategies for desired soil 

functions. 

Nitrogen-related soil health indicators (TN, PMN, and ACE) had weak positive 

relationships to each other (R2 < 0.34), and thereby represented distinct pools of N. In 

contrast, Geisseler et al. 2019 determined that ACE had a weak positive relationship with 

net N mineralization (R2 = 0.21), but had strong positive relationships with TN (R2 = 0.86) 

and POXC (R2 = 0.84). However, when soils were grouped according to low and high TN 

content, they concluded that soils with higher TN (2.71 to 12.48 g kg-1 soil) exhibited 

stronger positive relationships between ACE and POXC as well as ACE and TN than soils with 

less TN (0.65 to 1.56 g kg-1 soil). In our study, TN values (867 to 3750 mg kg-1 soil) were 

similar to those observed in the low TN soils. Subsequently, weak relationships between 

ACE and POXC as well as ACE and TN were observed. Thus, soil TN content affects the 

strength of indicator relationships with ACE. 

The biological incubation methods, minC and PMN, had the strongest relationship 

between each other than any other combination of the biological soil health indicators 

(POXC, minC, PMN, and ACE). Yet, coefficients of determination between minC and PMN 

were not large enough to select one indicator to represent both rates of C and N 

mineralization. This further supports the recommendation by NRCS for minC to represent 

general microbial activity while PMN and ACE represent bioavailable N (Stott, 2019).
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NRCS Variable Selection and Descriptive Statistics 

From the WSS soil properties and indices, forty-one categorical and sixteen 

continuous explanatory variables were identified to fit the scope of our analysis (Tables 1.3 

– 1.5). Eleven categorical variables (soil temperature regime, soil moisture class and 

subclass, agricultural organic soil subsidence, susceptibility to compaction, surface salt 

concentration, suitability to aerobic organisms, soil texture, flooding frequency class, 

ponding frequency class, and saturated hydraulic conductivity) were excluded from further 

analysis due to lack of variation (i.e. >90% of fields belonged to a single category). For all 

fields: soil temperature regime was mesic; soil moisture class was udic; agricultural organic 

soil subsidence was rated mineral; susceptibility to compaction was rated medium; and 

ponding frequency class was rated none. Surface salt concentration was rated low for all 

reported fields (n = 98). Since <80% of fields had a value reported, run-off class was 

excluded. Soil series was excluded due to imbalanced field distributions. For continuous 

variables, electrical conductivity was excluded because all fields had the same value of 0.0 

dS/m (n = 98); yields for non-irrigated corn and soybean were excluded because they had 

observations for <80% of the fields with n = 27 and n = 29, respectively. Available water 

supply (0 - 25, 0 - 50, 0 - 100, 0 - 150 cm) is computed by multiplying the fixed factor of soil 

depth to available water capacity (AWC). Thus, available water supply was excluded 

because it provided redundant information already provided by available water capacity. 

Thirty-seven NRCS variables remained and were analyzed for significant effects (Table 1.7 – 

1.9). 
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Normality of soil health indicator values is required for simple linear regression and 

ANOVA analysis to evaluate effects of NRCS soil information. West et al. (1996) described 

skewness as a measure of asymmetry where absolute values > 2.1 is indicative of a non-

normal distribution. Absolute “excess” kurtosis values > 4.1 (i.e. kurtosis (proper) > 7.1) is 

indicative of a non-normal peak shape. Only SOM and TOC presented any signs of non-

normality as their kurtosis (excess) values indicated “peakedness” (Table 1.6). All 

continuous NRCS soil variables met conditions of normality (Table 1.3). For simple linear 

regression, evaluation of Q-Q and residuals versus fitted values plots concluded that the 

assumptions of normality, constant variance, and linearity were met for analysis of NRCS 

soil properties with soil health indicators. Thus, no transformations were implemented. 

Effects of Inherent Soil Properties and Indices 

Soil Taxonomy 

Classification of soils in the U.S. is performed according to the principles outlined in 

USDA-NRCS’ Soil Taxonomy, which categorizes soils primarily by their composition, 

structure, and chemical and physical properties. Since the criteria used in classification 

affects many soil functions, biological soil health is likely to differ between more disparate 

soil classifications. Three soil orders (Alfisols, Entisols, and Mollisols) were represented in 

our dataset (Table 1.4). Fields with higher SOM and TOC occurred in Mollisols and soils 

containing Mollic epipedons (Figure 1.3 and 1.4). An inherent aspect of Mollisols and Mollic 

epipedons is a deep, SOM-rich surface horizon primarily formed from long-term 

accumulation under historical grassland cover (Brady and Weil, 2010). In addition, fields 
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that were Mollisols and Udolls had higher TN (Figure 1.5). The influence of soil classification 

on TN may be less important as TN was differentiated at a coarser resolution than SOM and 

TOC. Suborder was the finest resolution that was able to differentiate TN compared to 

subgroup for SOM and TOC. Soil order and suborder have identical distributions due to 

perfect collinearity in the dataset. Thus, the resolution for TN may be even coarser. 

The higher baseline values of soil health in Mollisols highlight that soil taxonomy is 

an important consideration in soil health evaluation and the setting of benchmarks. 

However, none of the biological indicators of soil health were differentiated by soil 

taxonomy. Although there were not differences at this regional scale, a greater 

representation of soil taxonomic classes may be necessary for assessing biological soil 

health on a national scale. The NRCS and the USDA-Agricultural Research Service are 

cooperating on a meta-analysis spanning 38 states to evaluate the effect of 57 different soil 

series, 68 great groups, 28 suborders, and 9 different soil orders on SMAF soil health 

indicators and their response to management (Karlen et al., 2019). 

Parent Material 

Although parent material had an effect on SOM, TOC, and TN, its effect was difficult 

to interpret with the limited differentiation between parent materials (Figure 1.3 to 1.5). 

The surface layer of fields were primarily windblown-deposited materials such as silt and 

loess (Table 1.4). Only four out of 124 fields had surface alluvial deposits. The primary 

differences between parent materials were in the subsurface layers and many categories 

had 6 or fewer observations. Narrowing the focus to the Driftless Region may have limited 
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Table 1.7. Continuous NRCS variable effects on SOM, TOC, and TN. 

Type Variable 
SOM TOC TN 

p Rel. R2 p Rel. R2 p Rel. R2 

Properties 

pH NS     0.03 + 0.038 0.032 + 0.037 
Clay (%) NS     NS     NS     
Silt (%) NS     NS     NS     

Sand (%) 0.004 + 0.067 0.002 + 0.077 NS     
Bulk Density 0.0002 - 0.11 0.0002 - 0.11 0.009 - 0.055 

CEC 0.045 + 0.033 NS     NS     
Depth of A Horizon 0.046 + 0.032 0.044 + 0.033 NS     

Representative Slope 
(%) NS     NS     NS     

Water Content  
at 1500 kPa NS     NS     NS     

Water Content  
at 3 kPa NS     NS     NS     

Indices 
NCCPI (Small Grain) NS     0.02 - 0.044 NS     

NCCPI (Corn) NS     NS     NS     
NCCPI (Soybean) NS     NS     NS     

NRCS = Natural Resources Conservation Service; NS = not significant; CEC = Cation-exchange capacity at pH 7;  
NCCPI = National Commodity Crop Productivity Index; SOM = soil organic matter; TOC = total organic carbon;  
TN = total nitrogen 
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Table 1.8. Continuous NRCS variable effects on POXC, minC, PMN, and ACE. 

Type Variable 
POXC minC PMN ACE 

p Rel. R2 p Rel. R2 p Rel. R2 p Rel. R2 

Properties 

pH 0.0009 + 0.086 0.014 - 0.048 NS     0.033 - 0.037 
Clay (%) NS     NS     NS     NS     
Silt (%) NS     NS           0.036 + 0.036 

Sand (%) NS     NS     NS     0.019 - 0.045 
Bulk Density NS     NS     NS     NS     

CEC NS     NS     NS     NS     
Depth of A Horizon 0.022 + 0.043 NS     NS     NS     

Representative Slope 
(%) NS     NS     NS     NS      

Water Content 
at 1500 kPa NS     NS     NS     NS      

Water Content  
at 3 kPa NS     NS     NS     NS      

Indices 
NCCPI (Small Grain) NS     NS     NS     NS     

NCCPI (Corn) NS     NS     NS     NS     
NCCPI (Soybean) NS     NS     NS     NS     

NRCS = Natural Resources Conservation Service; NS = Not significant; CEC = Cation-exchange capacity at pH 7;  
NCCPI = National Commodity Crop Productivity Index; POXC = permanganate oxidizable carbon; minC = mineralizable carbon; 
PMN = potentially mineralizable nitrogen; ACE = autoclaved-citrate extractable protein. 
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Table 1.9. Categorical NRCS variable effects on soil health indicators.

  p-value 
Type Variable SOM TOC TN POXC minC PMN ACE 

Properties 

Available Water Capacity 0.0008 0.007 NS NS NS 0.02 0.002 

Order <0.0001 0.0001 0.034 NS NS NS NS 

Suborder <0.0001 0.0001 0.034 NS NS NS NS 

Great Group 0.0001 0.0001 NS NS NS NS NS 

Subgroup <0.0001 <0.0001 NS NS NS NS NS 

Drainage Class NS 0.009 NS NS NS NS NS 

Parent Material 0.004 0.0009 0.035 NS NS NS NS 

Depth to Restrictive Feature 0.012 NS 0.012 NS NS NS NS 

3D Landform Position NS NS NS NS NS NS 0.042 

Depth to Water Table NS 0.009 NS NS NS NS NS 

Available Water Storage NS NS NS NS NS NS NS 

Saturated Hydraulic Conductivity NS NS NS NS NS NS NS 

Indices 

Fragile Soil Index NS NS 0.004 NS 0.026 0.018 0.006 

Soil Surface Sealing <0.0001 <0.0001 0.033 0.002 NS NS 0.013 

OM Depletion 0.022 0.018 0.033 NS NS NS NS 

WICCPI (Corn) NS 0.0499 NS NS NS NS NS 

Whole Soil Erodibility Factor <0.0001 0.0006 NS NS NS NS NS 

Tolerable Soil Loss NS NS 0.047 NS NS NS NS 

Farmland Class NS NS NS NS NS NS NS 

Hydrologic Group NS NS NS NS NS NS NS 

Non-Irrigated Capability Class NS NS NS NS NS NS NS 

Wind Erodibility Group NS NS NS NS NS NS NS 
 Wind Erodibility Index NS NS NS NS NS NS NS 

NRCS = Natural Resources Conservation Service; WICCPI = Wisconsin Commodity Crop Productivity Index; 
NS = not significant; SOM = soil organic matter; TOC = total organic carbon; TN = total nitrogen; 
POXC = permanganate oxidizable carbon; minC = mineralizable carbon; PMN = potentially mineralizable nitrogen; 
ACE = autoclaved-citrate extractable protein
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the capacity to accurately identify minute differences in parent materials. At a larger 

regional or national scale, parent material may have clearer effects on soil health as parent 

materials might diverge further in composition. Effects of parent material on microbial 

parameters have been found in natural and forested systems, but most effects are 

explained by soil properties, such as clay content and pH, resulting from soil development 

under different parent materials (Yarwood et al., 2014; Alfaro et al., 2017; Angst et al., 

2018). It is unclear if parent material would be a useful component to soil health 

assessment or if it could be easily reflected by other properties. 

Slope Position  

Representative slope percentage did not affect soil health values, but primarily 

summit and primarily back slope positions had higher SOM than other hillslope positions. 

Soil protein was highest in soil profiles found on both interfluve and side slope positions. 

Interfluves are analogous to summit positions while side slopes are analogous to back 

slopes (Schoeneberger and Wysocki, 2017). Due to parallel surface water flow, back 

slopes/side slopes generally have higher rates of erosion relative to accumulation compared 

to summit/interfluve and toeslope positions. Thus, it is surprising that soils primarily 

residing on back slopes/side slopes would contain the highest SOM and ACE values due to 

their predisposition to erosion. Contour strip cropping was common on farms in our study 

area and may imply that preventative management was taken for areas with high 

susceptibility to water erosion. However, this was not captured in our study. Future 
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research may want to evaluate the relative importance of this management practice on 

varying slopes. 

Depth of A Horizon 

As the thickness increased of a soil’s A horizon (the top mineral layer of soil that is 

typically higher in OM than its lower layers), the amount of SOM, TOC, and POXC increased. 

A thicker A horizon may be indicative of soils that accumulated more OM due to the factors 

of soil formation. However, management such as tillage and cropping also affect the depth 

of soil horizons, but is not always reflected in soil surveys. Surface layers that are more 

frequently disturbed are more likely to change in composition and structure over time.  

The recency of soil surveys may limit the ability to discriminate differences at the 

field level derived under intensive management and land use change. According to the 

USDA-NRCS, field mapping for the entire state of Wisconsin was completed in fall 2005 and 

soil survey information made available online in 2006. The latest modifications to the soil 

survey occurred in September of 2019 in an effort to continuously update WSS compatibility 

with GIS technology and modern standards of mapping. Explicit statements highlighting the 

soil information that was updated, when, and how is critical to interpretation of field 

observations. Updates on soil information from archived samples using modern methods 

compared to new observations from soil field mapping have very different considerations 

for interpretation. Nevertheless, Depth of A horizon can be directly measured by farmers 

and land managers with training, and thereby can circumvent the use of estimates from the 

WSS and provide a potential co-variate for soil health assessment. 
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pH 

Soil acidity is recognized as an important factor for microbial community 

composition and activity (Rousk et al., 2009), but the bounds of the pH range used in 

analysis may be an important consideration in evaluating effects. All indicators were 

affected by pH besides SOM and PMN (Table 1.7 and 1.8). Total organic C, TN, and POXC 

had positive relationships with pH while minC and ACE had negative relationships with pH. 

Most fields had pH values higher than the target optimum for corn, soybean, and alfalfa 

production with 50% of fields between a pH of 6.8 and 7.3 (Laboski and Peters, 2012) (Table 

1.3). The higher density of neutral to alkaline fields may not capture pH effects in soils that 

span acidic to basic conditions. Field experiments with a more extensive range of pH values 

(as low as 3.5 to as high as 8.3) identified the opposite relationship between C 

mineralization and pH (Rousk et al. 2009 and Kemmit et al. 2006). Even with the direct 

measurement of pH (i.e. instead of an estimated pH from WSS), the limited range in pH 

values explained less than 5% of the variation in soil health indicators. Since pH is largely 

managed for optimizing production of specific crops, pH may be more useful for adjusting 

soil health expectations across different cropping systems than within similar cropping 

systems. 

Soil Texture, Cation-Exchange Capacity, and Bulk Density 

Currently, multiple soil health assessments for agricultural systems (e.g. CASH and 

SMAF) utilize soil texture to adjust indicator scoring functions (Moebius-Clune et al., 2016; 

Stott, 2019). Other properties that relay soil textural information may provide further 



36 

 

understanding in biological soil health differences. Of the 124 fields, only three had a soil 

texture other than silt loam. Although variation in soil texture was limited, the amount of 

sand (one of the particle sizes that quantitatively defines texture) had a positive relationship 

with SOM, TOC, and ACE. Sand content was relatively low (4.0 to 14.0%). Typically, larger 

variation in sand content is necessary to affect soil function as it is relatively inert compared 

to the other solid components of soil, such as clay. Small changes in the proportion of clay-

sized particles has large effects on soil properties and affects a soil’s potential for 

accumulating SOM and TOC (Moebius-Clune et al., 2016). However, clay content did not 

affect any of the soil health indicator values in our study while soil protein was the only 

indicator responsive to silt content. 

The Cation-Exchange Capacity (CEC) of soils is primarily a function of OM and clay 

mineralogy (Brady and Weil, 2010). Soil organic matter increases soil CEC through its high 

proportion of negatively charged sites that attract and exchange cations with the soil 

solution. As CEC and SOM are intrinsically related, soils with higher CECs coincided with 

higher SOM values. Cation-exchange capacity values from the WSS reflect antecedent SOM, 

which can be related by other soil information that is unlikely to change over relevant 

timescales (e.g. soil taxonomy).  

Bulk density had stronger linear relationships with SOM and TOC than sand content 

or any other continuous soil property. Bulk density more accurately reflects soil 

composition and texture as it is a measure of the amount of soil solids within a given 

volume. It is a function of soil aggregation as well as sand, silt, clay, and OM content. Bulk 
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density estimates from the WSS may prove useful for adjusting soil health benchmarks or 

be a potential substitute for textural class. 

Soil Water 

Total organic C was heavily influenced by soil water properties. Wetter soils 

contained more TOC (Table 1.9 and Figure 1.4). Aquic Hapludolls had higher TOC values 

than other subgroup classifications. Soils with aquic moisture subclass regimes experience 

saturated conditions more frequently than drier regimes (Soil Survey Staff, 1999). These 

conditions slow decomposition rates causing SOM and C to accumulate. In fact, soils with 

poorer drainage, shallower depths to water table, and higher AWC had higher TOC, but 

hydrologic group had no effect on TOC or any other soil health indicator (Figure 1.4 and 

Table 1.9).  

Available water capacity is an estimate of plant-available water calculated as the 

difference in soil water content at 3 kPa (i.e. field capacity) and 1500 kPa (i.e. wilting point). 

Although TOC increased with increasing AWC, water content at 1500 kPa and 3 kPa did not 

affect any indicators and should not be used individually to define critical thresholds for 

TOC. Site-specific management is likely to cause divergence from WSS estimated AWC. 

Future research should evaluate direct measurement of AWC for use as a potential co-

variate while other soil moisture information may be well-estimated from the WSS. Soil 

moisture is an important consideration for evaluating TOC potential and was identified as 

the primary environmental factor for storage of TOC in cropland (Wiesmeier et al., 2013). 
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Soil Erodibility and Tolerance to Soil Loss 

 Soil organic matter and TOC were impacted by whole soil erodibility and tolerance 

to soil loss. Soil erodibility (i.e. K factor) is used to quantify the vulnerability of soil particles 

to detachment and movement by water. Increases in index values reflect increased 

susceptibility to water erosion. Soils with a whole soil erodibility factor less than 0.43 had 

higher SOM and TOC. Granted, erodibility is not the only component determining soil loss, 

but reduced susceptibility to water erosion may minimize the overall erosion rate leading to 

higher SOM and TOC values. Soil erodibility is determined mainly by soil structure, saturated 

hydraulic conductivity, and percentage of silt, sand, and SOM. Thus, its relationship with 

SOM and TOC may in part be the result of differences in antecedent SOM. 

Only TN increased with increasing tolerance to soil loss and did not reflect SOM and 

TOC, which are usually depleted when soil is lost. Tolerable soil loss (i.e. T factor) is 

described as the “maximum rate of annual soil loss that will permit crop productivity to be 

sustained economically and indefinitely on a given soil” (Wischmeier and Smith, 1978). The 

inherent soil properties used to estimate tolerable soil loss are the depth to root and plant 

growth limiting layers and the severity of their physical and chemical properties (USDA-

NRCS, 2019). Since tolerable soil loss is related to a soil’s inherent fertility, soils with higher 

tolerance may exhibit intrinsic conditions for superior crop growth, such as higher TN.
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NRCS Soil Health Indices 

Several NRCS soil health indices depicted differences in most of the soil health 

indicators, especially the biological indicators (POXC, minC, PMN and ACE) (Figure 1.3 to 

1.7). Soils with lower susceptibility to surface sealing had higher SOM, TOC, TN, and POXC, 

while ACE was highest in highly susceptible soils. Surface seals and crusts are layers with 

poor infiltration formed by the destruction of soil aggregates, which causes surface pores to 

be blocked or filled (USDA-NRCS, 2008). Soil susceptibility to surface sealing is related to soil 

texture, OM content, and sodium content. The fragile soil index is a measurement of a soil’s 

susceptibility to degradation. It is characterized by low OM content, low aggregate stability, 

and weak soil structure. Soils that were less fragile had higher TN, minC, PMN, and ACE. 

Organic matter depletion is an index of soil vulnerability to OM losses estimated by 

antecedent OM, aeration, clay content, and land shape. Lower susceptibility to OM 

depletion had higher SOM, TOC, and TN. Many individual properties have not identified 

differences in biological soil heath indicators, but NRCS soil health indices represented 

differences well. The NRCS soil health indices combine multiple properties to explain 

susceptibility of soil to various forms of degradation and require further exploration as 

potential co-variates for biological indicators.  

NRCS Productivity Indices 

Farmland class and National Commodity Crop Productivity Indices (NCCPI) for corn 

and soybean did not affect any soil health indicators. The NCCPI for small grains had a 

negative relationship with TOC. It is an index based on inherent soil properties and modeled 
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with winter wheat. The index weighs heavily the negative effects to small grain production 

from saturated soil conditions. Since TOC increases under wetter conditions, the inverse 

relationship between TOC and NCCPI for small grains occurs despite the common 

association of TOC with enhanced crop productivity. The Wisconsin Commodity Crop 

Productivity Index (WICCPI) assesses the inherent capacity of land to produce non-irrigated 

crops through soil, landscape, and climate criteria for corn production. Fields ranked high 

according to WICCPI had higher TOC than less productive ratings. This index directly utilized 

antecedent OM in its evaluation, which may contribute to the differences in TOC between 

ratings. The influence of biological soil health is unrepresented in crop productivity indices, 

but recent work from Wade et al. (2020) found that improvements in biological soil health 

(POXC, minC, and ACE) increased fertilizer N use efficiency and corn grain yield. Biological 

soil health should be incorporated into crop productivity indices based on soil potential. 

CONCLUSIONS 

Besides SOM and TOC, relationships between soil health indicators sufficiently 

diverged (R2 < 0.60) highlighting that they provide unique information regarding soil health 

and the bioavailability of C and N. The main pools of C and N (SOM, TOC, and TN) were most 

affected by soil taxonomy, textural-related soil information, and indices regarding soil 

depletion or erodibility. Total organic C was the only indicator affected by soil water 

properties and demonstrated the importance of soil moisture in C cycling. Biological 

indicators representing the bioavailability of C and N (POXC, minC, PMN, and ACE) were 

differentiated by fewer NRCS variables. However, several NRCS soil health indices (soil 
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surface sealing, OM depletion, and the fragile soil index) captured differences in many 

biological indicators as well as the larger C and N pools. Many NRCS properties and indices 

that utilized antecedent SOM content were associated with soil health indicators, especially 

SOM and TOC, but it was not consistent. It is important to incorporate and contextualize 

these differences in indicator response to soil properties when evaluating soil health within 

and across regional cropping systems. Identification of the most influential soil properties 

on individual soil health indicators is critical to the establishment of benchmarks that 

evaluate soils among their peers. Soil health assessments with improved criteria for 

benchmarking would optimize their ability to inform farm management decisions and enact 

change that improves agricultural production and the provision of ecosystem services. 

Existing, publicly available soil information provided by the NRCS WSS was a useful 

tool to explore how inherent soil properties affected soil health in a given region. Analysis of 

soil health in the Driftless Region identified potential co-variates to include in soil health 

assessment despite minimization of variation in soil properties relative to inter-region 

variation. In particular, soil taxonomy, soil moisture, soil surface sealing, whole soil 

erodibility, the fragile soil index, and OM depletion were identified as potential co-variates 

for indicator scoring functions and benchmarks. Those properties and indices differentiated 

soil health values within the Driftless Region. This soil information should be collected and 

utilized in future soil health studies to understand their effects in other regions, climates, 

and cropping systems as well as to understand their applicability across spatial scales. Soil 

health assessments that incorporate essential co-variates when setting benchmarks may 

more accurately represent the health status of a given soil among its related peers as well 
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as inform management to improve crop production and the provision of ecosystem 

services.
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Figure 1.3. NRCS categorical variable effects on soil organic matter (SOM). 
Parent Material: 1 = loess; 2 = loess over calcareous loess over a landscape of residuum weathered from clayey shale, 3 = loess over clayey pedisediment, 4 
= loess over clayey pedisediments derived from dolomite or over residuums of dolomite; 5 = loess over maquoketa residuum weathered from calcareous 
shale; 6 = silty or dark slope alluvium, and 7 = silty loess over clayey pedisediment over residuum weathered from dolomite. 
Depth to Restrictive Feature: 1 = 10 to 25 inches to strongly contrasting textural stratification, 20 to 39 inches to lithic bedrock; 10 to 25 inches to strongly 
contrasting textural stratification; 2 = 20 to 44 inches to lithic bedrock; 20 to 39 inches to lithic bedrock; 24 to 48 inches to lithic bedrock; 16 to 55 inches to 
lithic bedrock; 3 = 36 to 72 inches to lithic bedrock; 39 to 59 inches to lithic bedrock; 42 to 60 inches to lithic bedrock; 4 = More than 80 inches. 
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Figure 1.4. NRCS categorical variable effects on total organic carbon (TOC). 
Parent Material: 1 = loess; 2 = loess over calcareous loess over a landscape of residuum weathered from clayey shale, 3 = loess over clayey pedisediment, 4 
= loess over clayey pedisediments derived from dolomite or over residuums of dolomite; 5 = loess over maquoketa residuum weathered from calcareous 
shale; 6 = silty or dark slope alluvium, and 7 = silty loess over clayey pedisediment over residuum weathered from dolomite. 
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Figure 1.5. NRCS categorical variable effects on total nitrogen (TN). 
Parent Material: 1 = loess; 2 = loess over calcareous loess over a landscape of residuum weathered from clayey shale, 3 = loess over clayey pedisediment, 4 
= loess over clayey pedisediments derived from dolomite or over residuums of dolomite; 5 = loess over maquoketa residuum weathered from calcareous 
shale; 6 = silty or dark slope alluvium, and 7 = silty loess over clayey pedisediment over residuum weathered from dolomite. 
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Figure 1.6. NRCS categorical variable effects on permanganate oxidizable carbon (POXC), 
mineralizable carbon (minC), and potentially mineralizable nitrogen (PMN).
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Figure 1.7. NRCS categorical variable effects on autoclaved-citrate extractable protein (ACE).
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CHAPTER 2: FARM MANAGEMENT AND BIOLOGICAL SOIL HEALTH 

ABSTRACT 

 Understanding the effect of farm management and its interaction with inherent soil 

properties on soil health is critical to developing best management practice 

recommendations. To evaluate the effect of organic management practices and their 

duration on soil health, soils were obtained from 124 fields across 16 certified organic grain 

farms in the Driftless Region of Wisconsin. In spring of 2018 and 2019, soils were sampled to 

a depth of 15 cm and analyzed for soil health with an emphasis on biological health. The 

main pools of carbon and nitrogen (soil organic matter (SOM), total organic carbon (TOC), 

and total nitrogen (TN)) as well as biological soil health indicators (permanganate oxidizable 

carbon (POXC), mineralizable carbon (minC), potentially mineralizable nitrogen (PMN), and 

autoclaved-citrate extractable protein (ACE) were measured. Simple linear regression and 

analysis of variance were utilized to determine effects of management practices on soil 

health indicators while regression tree analysis was utilized to determine the relative 

importance of both inherent soil properties and management practices on soil health. Land 

use legacy, cropping sequence, manure management, and tillage management affected soil 

health values, but indicators responded to different management practices. Although SOM 

and TOC were affected by management, susceptibility to surface sealing was the most 

important determinant for SOM and TOC. Soils with lower susceptibility had higher SOM 

and TOC. Total nitrogen was most influenced by the inclusion of a perennial crop in the 

cropping sequence; exclusion led to decreased TN. Sampling time had the largest effect on 
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minC, thereby standardization of a sampling window is necessary for minC use as an 

indicator. Many of the newly recommended biological soil health indicators (POXC, PMN, 

and ACE) did not generate regression trees, but were affected by specific management 

practices. The selective response of soil health indicators to management highlights that 

many management strategies may be required to achieve soil health goals. Future research 

should utilize larger regional and national soil health datasets to improve selection of co-

variates for soil health assessment, and generation of best management practice 

recommendations. 

INTRODUCTION 

Agricultural systems rely on soil to accomplish a multitude of functions that affect 

food, feed, and fiber production as well as mitigation of climate change and environmental 

degradation. The ability of soil to provision services for the betterment of society has 

amplified public interest in soil health. According to the United States Department of 

Agriculture-Natural Resources Conservation Service (USDA-NRCS), soil health is “the 

capacity of the soil to function as a vital living ecosystem that supports plants, animals, and 

humans” (Stott, 2019). There are three components of soil health that regulate soil 

functioning: biological, physical, and chemical properties. 

Organic agricultural systems heavily depend upon soil health’s biological component 

for crop productivity. Since synthetic fertilizers are prohibited, they rely on the activity of 

soil organisms to supply nutrients, especially nitrogen (N), through the processing of organic 

amendments, such as manure and compost. According to the 2016 Certified Organic Survey, 
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Wisconsin organic agriculture represents an over $250 million industry with greater than 

88,000 hectares in organic production (USDA-NASS, 2017). Over half of that area is in field 

crops, thereby making Wisconsin its second largest producer. Maintenance and 

improvement in biological soil health is critical to sustain organic agricultural systems. Many 

comparison studies found that biological metrics of soil health are improved in organic 

systems relative to conventional systems (Marinari et al., 2006; Suja, 2013; Surekha et al., 

2013). However, to optimize soil function in organic systems, it is important to understand 

how variation in soil characteristics and management practices affect biological soil health 

on organic farms. 

Debate over how to measure biological soil health has delayed standardization of 

methods and assignment of benchmarks for assessment. Relating the composition and 

abundance of a soil’s microbial community to presumed functions has been one approach 

to understand the living component of soil (Lehman et al., 2015). Along with being cost 

prohibitive, microbial community composition does not yet have a clear interpretation for 

informing management (Stott, 2019). Indirect measurements known as indicators have 

been developed to quantify important biological processes with the specific aim to inform 

management. Robust indicators are easy to use, cost-effective, sensitive to management, 

well-suited to commercial labs, and able to supply timely information to adapt management 

(Morrow et al., 2016; Stott, 2019). With the 2019 NRCS endorsement of soil health 

indicators and release of standardized methods (Stott, 2019), prospects have improved for 
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coordinating regional and national efforts to develop informative soil health assessments 

(e.g. Norris et al., 2020). 

For development of soil health assessments, long-term trials have been leveraged to 

develop an understanding of soil health threshold values and the effects of management 

across geospatial regions and edaphic conditions (e.g. Culman et al., 2012; Hurisso et al., 

2016; Diederich et al., 2019; Norris et al., 2020). Individual long-term trials are able to 

observe changes in soil health from management while minimizing variation in inherent soil 

properties and climate. However, their capacity to evaluate multiple practices and their 

interactions are constrained by the land area available for such studies. Unstructured 

sampling designs on working farms present an opportunity to capture a large amount of 

variation in management that cannot be captured in long-term trials. Although a larger 

sampling size would be required to achieve sufficient statistical power, the potential to 

aggregate data from similar on-farm studies and long-term trials can be utilized to build 

large regional and national databases. 

Another approach to handling a large number of predictor variables (e.g. inherent 

soil properties, climate, and management) relative to observations is to apply recursive 

partitioning, repeated splitting of observations into groups with similar response values. 

Classification and regression trees are methods of recursive partitioning well-suited for 

analysis of complex ecological data because of their ability to 1) analyze numerical and 

categorical values in response and explanatory variables, 2) identify linear and non-linear 

effects, 3) analyze high-order interactions, 4) handle missing values in response and 
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explanatory variables, and 5) present easily interpretable results (De’Ath and Fabricus, 

2000; Strobl et al., 2009). The ability of classification and regression trees to identify and 

quantify the relative importance of numerous predictor variables is highly applicable to the 

evaluation of agroecosystems, which are the result of climatic, edaphic, and management 

factors. 

Much research has focused on the effect of management on soil health and not on 

the effect of inherent soil properties beyond pH and texture despite public access to NRCS 

soil data for greater than 95% of U.S. counties (Soil Survey Staff, n.d.). While a majority of 

inherent soil properties are unalterable under relevant timescales, farm management is an 

important lever that can be utilized to optimize soil health. Nevertheless, inherent soil 

properties are determinants to an individual soil’s potential; thereby it is critical to 

determine their effects on soil health and the potential interactions they may have with 

management. Regression tree analysis that includes both inherent soil properties and 

management as predictors may better inform our understanding of soil health potentials 

and effects at regional and national scales. 

Overall, this research aims to determine the effect of organic management practices 

and their duration on the main soil pools of carbon (C) and N (soil organic matter (SOM), 

total organic carbon (TOC), and total nitrogen (TN) as well as biological indicators of soil 

health (permanganate oxidizable C (POXC), mineralizable carbon (minC), potentially 

mineralizable N (PMN), and autoclaved-citrate extractable protein (ACE) in order to develop 

best management practice recommendations for optimizing C and N cycling in organic grain 
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and forage production systems. The specific objectives of this study are to: 1) evaluate the 

individual effect of organic management practices on soil health indicators and 2) evaluate 

the relative importance of management and inherent soil properties on indicators of soil 

health. 

Since variation within soil properties may be limited due to constraining field 

selection by region and cropping system, we hypothesize that the greatest variation in soil 

health indicator values will be explained by management. A meta-analysis of long-term 

research trials showed that POXC increases in systems utilizing reduced tillage and 

applications of processed C (e.g. compost) while minC increases in systems utilizing high-

intensity tillage, cover crops, and manure (Hurisso et al. 2016). Mineralizable N was 

enhanced under reduced tillage, organic amendment and manure additions, and crop 

rotation diversity (Doran, 1987; Rasmussen et al. 1998; Mikha et al. 2006; Sanchez et al. 

2001; Sharifi et al. 2008). Soil protein is similarly enriched under reduced tillage and organic 

amendment (Balota et al. 2016; Luna et al. 2016; Sandeep et al. 2016; Singh et al. 2016). We 

expect POXC, minC, PMN, and ACE to respond similarly to management on organic grain 

farms. Changes in SOM and TOC occur slowly and are unlikely to be detected in five-year 

management histories, but long-term management (e.g. duration of certified organic 

management and pre-organic land history) are likely to affect their values.  

MATERIALS AND METHODS 

Field selection as well as soil sampling and analysis were performed according to the 

methods outlined in Chapter 1: Inherent Soil Properties and Biological Soil Health. Detailed 
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histories of the previous five years of management regarding cropping sequence, cover 

cropping, and tillage and fertility management as well as long-term field management 

information regarding organic management history were obtained directly from 

correspondence with each farmer.  

In particular, the following management information for the past five years was 

obtained: the order, timing, and plant species used in the cropping sequence; the 

frequency, timing, and plant species used in cover cropping; the tillage implements used, 

the number of passes with each, and when they were used; and the application method, 

frequency, timing, source (i.e. animal), and physical state of manure and other applied 

amendments. The following information regarding the organic history of each field was 

obtained: first transition year, first organic certification year, duration under organic 

management (years), and land use prior to organic transition. 

Statistical Analysis 

Descriptive statistics were used to explore the distribution of management and 

response variables (SOM, TOC, TN, POXC, minC, PMN, and ACE). The describe function from 

the Psych package in R was used to perform univariate statistics, such as mean, median, 

skewness, etc., on both continuous management and response variables. Histograms were 

used to visually review normality of continuous variables. Categorical management variable 

distributions were evaluated from the number of observations and percent of total 

observations per category. To exclude management variables from analysis that did not 

provide sufficient information due to lack of or excess variation, explanatory variables were 

removed from the dataset if either of the following criteria were met: 1) <80% of fields had 
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a value reported, 2) >90% of fields belong to a single category, and/or 3) categorical 

variables contained greater than ten categories that were highly unbalanced.  

Of the remaining management variables, their effects on soil health indicators were 

assessed in R using analysis of variance (ANOVA) with a Fisher’s least significant difference 

(LSD) test for categorical explanatory variables and simple linear regression for continuous 

explanatory variables (α= 0.05). The aov and summary functions were used for ANOVA 

while lm and summary functions were used for simple linear regression. Simple linear 

regression assumptions of linearity, constant variance, and normality were evaluated using 

residuals versus fitted values plots and Q-Q plots. 

The remaining management variables were pooled with previously identified NRCS 

variables from Chapter 1: Inherent Soil Properties and Biological Soil Health to construct a 

dataset for regression tree analysis. The cumulative dataset of explanatory variables 

underwent analysis for multicollinearity. Contingency tables were used to evaluate 

multicollinearity between categorical variables while continuous variables were evaluated 

with simple linear regression. If perfect multicollinearity was identified between variables, 

the variable providing the most reliable highest resolution information was selected for 

inclusion in the regression tree model. 

Regression tree analysis was used to evaluate the relative importance of inherent 

soil properties and management practices on soil health indicator values. For each soil 

health indicator, trees were manually generated 20-times under the following node 

termination criteria using rpart: 1) nodes must contain >10% of observations for a split to be 

attempted, 2) for a split to be included it must decrease the complexity parameter (cp) by a 
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minimum of 0.0001, and 3) the maximum branching depth of the tree is eight. Each manual 

generation of a tree was cross-validated with ten equally sized subsets of the original 

dataset. The cp for the branch depth that minimized the cross-validation error was recorded 

for each of the twenty manually generated trees. To avoid overfitting the data, a single 

regression tree was formed for each soil health indicator by pruning the original tree to the 

branch depth that most frequently (n =20) yielded the lowest cross-validation error. Primary 

and surrogate splits, and variable importance for pruned trees were obtained with 

summary. Variable importance is calculated as “the sum of the goodness of split measures 

for each split for which it was the primary variables, plus goodness × (adjusted agreement) 

for all splits in which it was a surrogate” (Therneau & Atkinson, 2019). 

RESULTS AND DISCUSSION 

Descriptive Statistics 

Nine categorical and eight continuous explanatory management variables were 

generated from farmer-provided field histories and records (Table 2.1 and 2.2). None of the 

management variables generated met any of the preliminary criteria for exclusion. 

Skewness and kurtosis values were indicative of normal distributions for continuous 

management variables according to West et al. (1996). Evaluation of residuals versus fitted 

values plots confirmed that all continuous management variables met the assumptions of 

constant variance, and linearity for simple linear regression with soil health indicators. 

However, Q-Q plots of continuous management variables did not always fulfill the 

assumption of normality; they typically exhibited minute deviations in regions with 
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relatively few observations. Log and exponential transformations did not improve 

normality. Consequently, simple linear regression and ANOVA proceeded without 

transformations for the evaluation of relationships between management factors and 

indicators of soil health (Table 2.3 and 2.4). 

Sampling Time 

Mineralizable C and POXC were the only indicators affected by sampling day (Table 

2.5). The linear relationship between the day of sampling and minC had the largest 

coefficient of determination (R2) with 0.20; it was nearly double the next largest R2 

observed with any other indicator and explanatory variable (management or NRCS). As in 

our study, previous studies concluded that temporal variation was a limitation in soil health 

evaluation and comparison; soils sampled later in the growing season (June to August) 

tended to have higher minC, PMN, and POXC values than when sampled earlier (Diederich 

et al. 2019; Hurisso et al. 2018a). Unlike previous work, POXC had a weak inverse 

relationship with sampling day, but temporal variation in POXC values may have been more 

limited as we sampled over a narrower window. Still, standardizing a sampling period for 

soil health assessment may be essential for developing critical values and making 

meaningful interpretations for management recommendations, especially for minC. 

Land Use Legacy 

Despite narrowing the focus of the study to certified organic grain and forage 

production systems, legacy effects of historical land use were a major contributor to soil 

health. All but one of the fields that were conventional pasture prior to organic certification  
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Table 2.1. Farm management categorical variables and their distribution.
  Long-term Management 
Fields (n)  Rotation Sequence 

19  4-yr A 
39  1-yr annual following 3-yr A 
13  2-yr annual following 3-yr A 
20  Rotations with 2-yr or 1-yr A 
26  Annuals 

6  Perennial lands transitioning 
to cropping    

Fields (n)  Manure State 
8  None 

54  Liquid 
5  Solid 

47  Combination 
10  No Data    

Fields (n)  Pre-Organic Land History 
97  Conventional dairy 
7  CRP 
7  Conventional Row Crop 
6  Conventional Pasture 
4  No Data 
   

Fields (n)  
Till Type Past 5 Years  
(Most aggressive) 

0  No-till 
22  Min-till 
38  Chisel/deep rip 
4  Rotovator 

15  Chisel and rotovator 
44  Moldboard 

   
All variables have missing data with n=1 unless 
otherwise stated. 
Min-till refers to either disk, cultivator, tine 
weeder, harrow, mulcher and finisher use. 
A = Alfalfa; C = Corn; S = Soybean; W = Winter 
Wheat; Ra = Tillage Radish; CRP = Conservation 
Reserve Program 
   
   
   
   

  Short-term Management 
Fields (n)  Manure Use Year Prior 

70  None 
24  Spring 
22  Fall 
6  Winter 
2  No Data    

Fields (n)  Cover Crop Year Prior 
68  No 
55  Yes 

   

Fields (n)  
Till Type Year Prior  
(Most aggressive) 

23  No-till 
26  Min-till 
56  Chisel/deep rip 
4  Rotovator 
7  Chisel and rotovator 
6  Moldboard 
3  No Data    

Fields (n)  Corn Residue Year Prior 
47  Silage 

40 
 

Grain or snaplage with stalks 
left 

36  Grain with stalks removed 
1  No Data    

Fields (n) 
 

Crop Prior to Previous Corn 
Year 

73  A or A-Ra 
7  C 
7  C-Rye 

20  S 

13 
 

W or other small grain with or 
without cover crop following 

3  CRP or Pasture 
   



 

 

64 
Table 2.2. Univariate statistics for farm management and sampling continuous variables. 

Variable n min Q0.25 mean median Q0.75 max range sd cv (%) skew kurt 
Sampling Time (Day of Year) 124 112 116 141 133 159 183 71 24 17 0.32 -1.25 
No. of Last Fall to Spring Tillage Passes 121 0 1 3.05 3 4 10 10 2.58 85 0.95 0.47 
Years Certified Organic 121 0 6 11.84 11 18 27 27 8.22 69 0.07 -1.03 
No. of Different Crops* 116 2 3 3.77 3 4 7 5 1.17 31 0.87 0.32 
No. of Years with Legume Cover* 123 0 2 2.76 3 3 4 4 0.97 35 -0.95 0.87 
No. of Years with Perennial Cover* 123 0 2 2.38 3 3 4 4 1.38 58 -0.77 -0.76 
No. of Years with a Winter Cover Crop* 123 0 0 0.89 1 1 5 5 1.03 117 1.24 1.57 
No. of Manure Applications* 113 0 2 2.89 2 4 9 9 1.76 61 0.91 0.72 

*Frequency of event over five years prior to sampling. 
No. = number; min = minimum; Q0.25 = 1st quartile; Q0.75 = 3rd quartile; max = maximum; sd = standard deviation; cv = coefficient of variation;  
skew = skewness; kurt = kurtosis 

 
Table 2.3. Categorical farm management variable effects on biological soil health indicators. 

 p-value 
Variable SOM TOC TN POXC minC PMN ACE 

Pre-Organic Land History 0.0002 0.003 0.002 <0.0001 NS NS NS 

Rotation Sequence 0.053 NS 0.0007 0.022 NS NS NS 

Manure State 0.039 NS NS NS <0.0001 0.003 NS 

Crop Prior to Previous Corn Year NS NS 0.009 NS NS NS NS 

Corn Residue Year Prior 0.005 0.005 NS NS NS NS NS 

Till Type Past 5 Years NS NS NS NS NS NS 0.017 

Manure Use Year Prior NS NS NS NS 0.0003 NS NS 

Cover Crop Year Prior NS NS NS NS NS NS NS 

Till Type Year Prior NS NS NS NS NS NS NS 
NS = not significant; SOM = soil organic matter; TOC = total organic carbon; TN = total nitrogen; POXC = permanganate oxidizable carbon; 
minC = mineralizable carbon; PMN = potentially mineralizable nitrogen; ACE = autoclaved-citrate extractable protein. 
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Table 2.4. Continuous farm management variable effects on SOM, TOC, and TN. 

Variable 
SOM TOC TN 

p Rel. R2 p Rel. R2 p Rel. R2 
Sampling Time (Day of Year) NS   NS   NS   

Years Certified Organic NS     NS     NS     

No. of Last Fall to Spring Tillage Passes NS     NS     NS     

No. of Different Crops* NS     NS     NS     

No. of Years with Legume Cover* NS     NS     NS     

No. of Years with Perennial Cover* NS     NS     0.004 + 0.067 

No. of Years with a Winter Cover Crop* NS     NS     NS     

No. of Manure Applications* NS     NS     NS     
* Frequency of event over five years prior to sampling. 
NS = not significant; SOM = soil organic matter; TOC = total organic carbon; TN = total nitrogen 
 

Table 2.5. Continuous farm management variable effects on POXC, minC, PMN, and ACE. 

Variable POXC minC PMN ACE 
p Rel. R2 p Rel. R2 p Rel. R2 p Rel. R2 

Sampling Time (Day of Year) 0.049 - 0.032 <0.0001 + 0.20 NS   NS   
Years Certified Organic 0.032 + 0.038 NS     NS     0.031 + 0.038 
No. of Last Fall to Spring Tillage Passes NS   NS NS     NS     0.027 - 0.04 
No. of Different Crops* 0.011 + 0.055 NS     0.013 + 0.053 0.04 + 0.036 
No. of Years with Legume Cover* NS   NS NS     NS     NS     
No. of Years with Perennial Cover* NS   NS NS     NS     NS     
No. of Years with a Winter Cover Crop* NS   NS NS     NS     NS     
No. of Manure Applications* NS   NS NS     NS     NS     

* Frequency of event over five years prior to sampling. 
NS = not significant; POXC = permanganate oxidizable carbon; minC = mineralizable carbon; PMN = potentially mineralizable nitrogen; 
ACE = autoclaved-citrate extractable protein 
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were converted over ten years ago. Despite this temporal distance in system, fields that 

were previously conventional pastures had higher SOM, TOC, TN, and POXC (Table 2.3 and 

Figure 2.1 to 2.4). Perennial pasture systems contribute a larger amount of belowground C 

to the soil compared to cropped land (Radrizzani et al., 2011; Sanford et al., 2012) while also 

stabilizing OM and C through soil aggregation and cover. Over a 20-year period, soil TOC in 

the upper 15 cm of Wisconsin Mollisols increased in perennial pasture systems, while other 

common Midwestern cropping systems lost TOC (Sanford et al., 2012). Identifying novel 

strategies to incorporate pasture into cropping systems of the Midwest may be a 

worthwhile approach to improve SOM and TOC content of our agricultural lands. In 

conventional tillage systems, Salvo et al. 2010 found that crop-pasture rotations (three 

years of annual crops followed by three years of pasture) led to higher TOC accumulation 

than rotations solely with annual crops. 

Fields that were conventional row crop prior to initiating organic management were 

primarily in the transition phase and not yet organic certified. These fields along with fields 

previously enrolled in the Conservation Reserve Program (CRP) had lower TN values than 

conventional pasture and dairy systems. Since animal waste management is an intrinsic 

aspect of conventional pasture and dairy systems, fields with these prior uses were more 

likely to receive manure through application or grazing than conventional row crop systems 

and CRP. This may contribute to differences in TN values. 

Rotation and Cropping Sequence 

Total N and POXC were lowest in fields with five years of consecutive annual 

cropping (Figure 2.3 and 2.4). A positive relationship between perennial cover and TN 
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reinforced an effect of perenniality (Table 2.4). Increasing system perenniality has been 

recognized as a strategy to increase biological soil health and SOM accumulation. 

Specifically, increases in system perenniality led to higher total C, TN, POXC, minC, and PMN 

in Wisconsin Mollisols (Diederich et al., 2019). 

 In addition, the cropping sequences and order of crops had an effect on N 

indicators. Increasing the diversity of plants utilized in five-year cropping sequences 

increased PMN and ACE (Table 2.4). This reinforces work that found that PMN was higher in 

rotations containing at least three different crops (Mahal et al., 2018). What crops were 

planted within the last two years affected TN. Total N was reduced when soybean was 

planted before corn compared to other crops before corn (Figure 2.3). Despite being an 

annual legume, soybean provides little N through biological fixation and additional N is 

required to supplement uptake from high N demanding crops. The differences in TN by crop 

sequence may also be a result of manure and N management decisions by crop not 

reflected in other management variables. 

Duration of Organic Management 

Although greater than three years of organic management was shown to improve 

soil health (Drinkwater et al., 1995), most indicators were not affected by duration of 

organic management. Only 3.8% of the variation in POXC and ACE was explained by 

duration of organic management. Without the use of synthetic fertilizers, organic systems 

rely on soil microorganisms to process SOM in order to supply fertility (Doran et al., 1987) 

resulting in a tightly-coupled N cycle with higher turnover rates (Drinkwater et al., 1995). 

Many comparison studies have found that biological metrics of soil health are improved in 
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organic systems. Organic management increased SOC (Surekha et al., 2006), TN (Marinari et 

al. 2005), and PMN (Drinkwater et al., 1995; Doran et al., 1987; Gunapala and Scow, 1997) 

compared to conventional management. Surprisingly, these indicators did not respond to 

duration of organic management in our study despite containing fields that spanned zero 

years (in transition) to 27 years of certified organic management (Table 2.2). 

Corn Harvest and Residue 

The type of corn harvest and residue management that occurred the year prior to 

soil sampling affected SOM and TOC (Figure 2.1 and 2.2). Most of the corn was harvested 

for grain (n = 74), but 36 of the fields harvested the stalks for other on-farm uses while 38 of 

the fields left their stalks remaining as residue (Table 2.1). Snaplage, an alternative feed for 

dairy cattle made of ensiled corn ears, husks, and shanks, was utilized in two fields that left 

their stalks as residue (Akins et al., 2008). Fields that harvested corn for silage or left corn 

stalks as residue had higher SOM and TOC values. Corn silage harvest leaves little residue on 

the field as the whole corn plant is harvested in the process. Thus, it is unlikely that the 

same mechanism is responsible for the higher SOM and TOC values in fields harvesting for 

silage or grain with stalks remaining. 

Manure Management 

Mineralizable C and PMN positively responded to manure application (Figure 2.4). 

Fields with manure applied the year prior to sampling had higher minC. When solely liquid 

manure was applied compared to none or other physical states of manure, minC and PMN 

values were elevated regardless of the animal(s) that provided the manure. Fields that did 

not receive manure over the past five years were primarily conventional pasture prior to 
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their organic transition. Soil organic matter was highest in these fields due to collinearity 

between previously conventional pasture fields and fields with no manure application. The 

land use legacy of pasture is likely the overriding factor in SOM values as manure and 

organic amendment application had been previously shown to increase minC and PMN in a 

diverse set of cropping systems and geographic regions (Hurisso et al., 2016; Mikha et al., 

2006; Sharifi et al., 2008). 

Tillage Management 

Increasing tillage frequency and intensity reduced N cycling indicators (Table 2.5 and 

Figure 2.4). The number of tillage passes completed in between the fall and spring before 

sampling had a negative relationship with ACE, but the relationship only explained 4% of the 

variation. Minimum tillage fields (fields utilizing a disk, cultivator, or other less disruptive 

tillage implement) and chisel-tilled fields had higher ACE values than fields that utilized a 

moldboard plow within the last five years. Previous work has found that PMN and ACE 

respond positively to reduced tillage systems (Mahal et al., 2018; Doran, 1987; Rasmussen 

et al., 1998; Nunes et al., 2018; Sandeep et al., 2016). 

Regression Tree Analysis 

Regression tree analysis utilizing NRCS soil information and farm management 

information produced trees for SOM, TOC, TN, and minC. No trees were generated for 

POXC, PMN, and ACE. Soil organic matter and TOC yielded identically pruned trees with a 

single split at low susceptibility to soil surface sealing (Figure 2.5 and 2.6). According to 

USDA-NRCS (2008), surface seals and crusts are layers with poor infiltration as a result of 

blocked or filled surface pores from the destruction of aggregates. Soil surface sealing 
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Figure 2.1. Categorical farm management variable effects on soil organic matter (SOM). 

CRP = Conservation Reserve Program
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Figure 2.2. Categorical farm management variable effects on total organic carbon (TOC) 

CRP = Conservation Reserve Program.
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Figure 2.3. Categorical farm management variable effects on total nitrogen (TN). 

A = alfalfa; CRP = Conservation Reserve Program; C = corn; Rad = Radish; W = wheat; SB = soybean
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Figure 2.4. Categorical farm management variable effects on biological soil health indicators. 
A = alfalfa; POXC = permanganate oxidizable carbon; minC = mineralizable carbon; PMN = potentially mineralizable nitrogen; 
ACE = autoclaved-citrate extractable protein 
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susceptibility is related to soil texture, OM, and sodium content. Thereby, soil surface 

sealing intrinsically reflects differences in antecedent OM and TOC content between soils.  

In further support of the standardization of sampling times for soil health analysis, 

minC was highest in samples obtained after May 26th (i.e. day 146) (Figure 2.7). Timing of 

sampling can greatly influence soil health values leading to misinterpretations of soil health 

status and management needs. 

Total N differentiated fields by their inclusion of perennials within the past five years 

(Figure 2.8); consecutive annual cropping led to lower TN values. Over 70% of fields utilized 

alfalfa, a perennial forage, which replenishes soil N through biological fixation. Alfalfa can 

meet the N demands of first-year corn when sufficient stand plant density is met (Laboski 

and Peters, 2012), and older stands of alfalfa typically provide larger N credits than younger 

stands (Yost et al., 2018). Although many annually cropped fields incorporated soybean, the 

amount of N provided is over 7-times smaller than that of a good alfalfa stand. Thereby, 

annual cropping systems are more susceptible to soil TN depletion following corn if organic 

amendments do not supplement N uptake. 

Regression trees were able to supply nuanced information despite containing only a 

single branch. The tree for minC explained more variation with its single primary split than 

simple linear regression of sampling time and minC (Figure 2.7). Regression trees are also 

able to indicate the amount of variation in indicator values explained by categorical primary 

variables through R2 values while ANOVA is unable to provide this information. The R2 for 

each tree was 0.24 for SOM and TOC, 0.15 for PMN, and 0.26 for minC. Regression tree 

analysis has the ability to identify linear and non-linear effects, thereby providing better 
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Figure 2.5. Pruned regression tree for soil organic matter (SOM) percentage. 

Within each node, the top number is the average SOM value for soils in that 
node. The lower-left number is the number of fields in that node, and the 
lower-right number is the percentage of total fields in that node. Darker 
shading indicates higher SOM values. Soil_Surface_Sealing_No (soil surface 
sealing): 0 = low; 1 = moderate; 2 = high.

R2 = 0.24 
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Figure 2.6. Pruned regression tree for total organic carbon (TOC) (mg C kg-1 soil). 

Within each node, the top number is the average TOC value for soils in that 
node. The lower-left number is the number of fields in that node, and the 
lower-right number is the percentage of total fields in that node. Darker 
shading indicates higher TOC values. Soil_Surface_Sealing_No (soil surface 
sealing): 0 = low; 1 = moderate; 2 = high.

R2 = 0.24 
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Figure 2.7. Pruned regression tree for mineralizable carbon (minC) (mg C kg-1 soil day-1). 

Within each node, the top number is the average minC value for soils in that node. 
The lower-left number is the number of fields in that node, and the lower-right 
number is the percentage of total fields in that node. Darker shading indicates 
higher minC values. Sampling_DoY = day of year when soil samples were obtained. 

  

R2 = 0.26 
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Figure 2.8. Pruned regression tree for total nitrogen (TN) (mg N kg-1 soil). 

Within each node, the top number is the average TN value for soils in that node. The 
lower-left number is the number of fields in that node, and the lower-right number 
is the percentage of total fields in that node. Darker shading indicates higher TN 
values. Rtn_Number (rotation sequence): 1 = 4-yr alfalfa (A); 2 = 1-yr annual 
following 3-yr A; 3 = 2-yr annual following 3-yr A; 4 = rotations with 2-yr or 1-yr A; 5 
= annuals; 6 = perennial lands transitioning to cropping.

R2 = 0.15 
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descriptions of relationships between indicators and explanatory variables than simple 

linear regression. Unfortunately, the ability is limited to variables solely included in the 

pruned trees. 

Regression trees were produced using the variable that best segregated fields by 

their soil health values. Variable importance, a measure of a variable frequency as a primary 

and surrogate split while accounting for “goodness of split”, was highest for the variables 

selected for inclusion in indicator regression trees (Table 2.6). The best primary variable had 

improvement ratings 1.23 to 1.69 times greater than the variable with the next highest 

improvement rating (Table 2.7). Improvement is the difference in sum of squared errors 

between parent and child nodes, and is a measure of decreased impurity (i.e. increased 

homogeneity) (Therneau and Atkinson, 2019). For the TN regression tree, five-year rotation 

sequence and the number of years with perennial cover had equal importance and 

improvement values due to their identical splitting pattern; they split according to whether 

the past five years of cropping were all annual crops or not.  

 Surrogate variable agreement was sufficient for handling missing observations in 

primary variables. Agreement is the proportion of observations sent the correct direction 

when using a surrogate variable in place of the primary variable for an observation with 

missing data (Therneau and Atkinson, 2019). Besides minC, the best performing surrogate 

variable of each regression tree had agreement values greater than 94%. Mineralizable C 

utilized sampling time as its primary variable, which has no missing observations and does 

not require a surrogate split for regression tree formation. Therefore, all of the surrogate 

variables utilized in tree formation were able to accurately direct observations to the 
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Table 2.6. The top five most important variables (variable importance scores) by soil health indicator.

Rank SOM TOC TN minC 

1 Surface Sealing 
(29) 

Surface Sealing 
(29) 

Rotation Sequence 
(25) 

Sampling Time 
(41) 

2 Parent Material 
(18) 

Parent Material 
(18) 

No. of Years with 
Perennial Cover* (25) 

Manure State 
(16) 

3 Depth of A Horizon 
(14) 

Depth of A Horizon 
(14) 

Crop Prior to Previous 
Corn Year (17) 

pH 
(13) 

4 Sand 
(14) 

Sand 
(14) 

No. of Years with 
Legume Cover* (15) 

No. of Last Fall to 
Spring Tillage Passes 

(12) 

5 Clay 
(14) 

Clay 
(14) 

Years Certified Organic 
(10) 

Manure Use Year Prior 
(10) 

* Frequency of event over five years prior to sampling. 
SOM = soil organic matter; TOC = total organic carbon; TN = total nitrogen; minC = mineralizable carbon; No. = number 
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Table 2.7. The top three primary and surrogate splits by soil health indicator. 

Indicator Primary Splits 
Root to Leaf Node 

Improvement 
Surrogate Splits Agreement 

SOM 

Surface Sealing 0.24 Parent Material 0.943 
Subgroup 0.195 Sand or Depth of A Horizon 0.919 

Whole Soil Erodibility Factor, 
Suborder, or Great Group 

0.158 Clay or Water Content at 1/3-bar 0.911 

TOC 
Surface Sealing 0.240 Parent Material 0.943 

Subgroup 0.142 Sand or Depth of A Horizon 0.919 
NCCPI Corn 0.138 Clay or Water Content at 1/3-bar 0.911 

TN 
Rotation Sequence 0.149 No. of Years with Perennial Cover* 1.00 

No. of Years with Perennial Cover* 0.149 Crop Prior to Previous Corn Year 0.927 
Crop Prior to Previous Corn Year 0.097 No. of Years with Legume Cover* 0.911 

minC 

Sampling Time 0.256 Manure State 0.742 
Manure State 0.191 pH 0.718 

Manure Use Year Prior 0.142 
No. of Last Fall to Spring Tillage 

Passes* 
0.702 

* Frequency of event over five years prior to sampling. 
SOM = soil organic matter; TOC = total organic carbon; TN = total nitrogen; minC = mineralizable carbon; No. = number 
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appropriate nodes and produce informative trees for assessing relative effects on indicator 

values. Future research that aggregates soil health data to form larger regional and national 

datasets would be beneficial for developing soil health assessments by increasing the 

likelihood to identify important effects and interactions with regression tree analysis. 

CONCLUSIONS 

 While many inherent soil properties contribute to differences in soil heath, farm 

management practices can improve or weaken the biological health of soils under 

agricultural production. Legacy land use and cropping sequences that utilized perennial 

cover had higher SOM, TOC, and TN. Nitrogen-cycling indicators were more affected by 

cropping sequence, crop diversity, and tillage. The incubation methods, minC and PMN, 

were influenced by the use of manure in the last year and the physical state of the manure. 

Mineralizable C was highly affected by sampling time and requires standardization of a 

sampling window for soil health comparisons. The disparate response of indicators to 

management indicates differences in sensitivity between indicators as well as soil elemental 

cycles. Therefore, multiple shifts in management may be required to support both healthy C 

and N cycling in agricultural systems. These results provide first-indications of best 

management practices for biological soil health in organic grain systems.  

 Overall, regression tree analysis produced trees for over half of the indicators. 

Perennial cover within rotation sequences was most important for differentiating TN while 

susceptibility to soil surface sealing was most important for differentiating SOM and TOC. 

Indicator regression trees were able to explain more variation in indicator values than 

simple linear regression and ANOVA for the explanatory variables included. Regression trees 
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are able to provide R2 values for categorical primary variables as well as capture linear and 

non-linear effects to generate better descriptions of indicator relationships with inherent 

soil properties and management practices. Despite minimizing variation in climate, 

geographical region, and production system, a higher number of field observations may be 

required to increase the likelihood of identifying important effects and explain more of the 

variation between field soil health values. Regardless, regression tree analysis was a useful 

tool for exploring the relative importance of management and inherent soil properties on 

farms as well as evaluating soil health indicator sensitivity and limitations. 

 Further research should coordinate larger studies or aggregate existing soil health 

data from long-term research trials and on-farm studies to improve detection and 

understanding of soil property and management effects on soil health. Identifying specific 

best management practices is crucial to improving nutrient use efficiency in agricultural 

production, the provision of ecosystem services, and the development of guidelines and 

policies to ensure it. 
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