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Abstract: The organic and local food sectors are becoming more important parts of the food 

system as shown by increasing sales and acreage. Eaters and buyers in these markets expect 

fruits, vegetables, and grains with superior eating and culinary qualities like flavor. In response, 

both farmers and agricultural researchers have increased interest in identifying varieties and 

breeding lines with exceptional sensory qualities. Historically, sensory science has utilized 

panels of highly trained, expert judges to evaluate and describe flavor properties, but traditional 

methods are not applicable for crop researchers working in organic and local food sectors for 

both logistical and scientific reasons. Traditional sensory analysis methods are overfit to 

industrial food contexts, and their ability to address the complexities underlying flavor 

development, perception, and preference seems questionable. The Seed to Kitchen Collaborative 

(SKC) is a joint research and Extension program at the University of Wisconsin-Madison. SKC 

is a participatory research network of seed companies, plant breeders, researchers, farmers, and 

local chefs that work to identify and develop high quality vegetable varieties for organic farms in 

the Upper Midwest. As part of their trialing process, SKC applies rapid sensory evaluation 

methods that eliminate formal training for tasters. The methods overall show good utility for 

applications in research and crop breeding and compare well with the established literature on 

correlations with crop preferences. But analysis of their internal reliability gives reason to 

reconsider sample collection protocols. Flavor, as a trait, is greater than the sum of its parts, and 

the same can be said about agriculture as a whole. This reckoning is impetus to critically look at 

the way Extension and Land Grant universities go about agricultural research, outreach, and 

education in general. In efforts to be valuable partners for organic growers now and in the future, 
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network-based tools and strategies like SKC are critical. They have the power to correct 

Extension’s historic shortcomings, facilitate farmer learning, and identify important individuals. 
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Chapter One 

An Introduction to Flavor and its Evaluation for Plant Scientists – A Literature Review 

and a Case for New Methods 

Introduction 

In 1825, one of the world’s original gastronomes Jean Anthelme Brillat-Savarin said, 

“smell and taste are in fact but a single composite sense, whose laboratory is the mouth and its 

chimney the nose.” Brillat-Savarin provided one of the earliest definitions of flavor: a 

combination of taste and smell, and somewhat remarkably, modern scientists still use similar 

descriptions. Heymann et. al (1993) and other sensory scientists employ a psychophysical 

understanding of flavor defining it as the “biological response to chemical [stimuli] by the senses 

[that is] interpreted by the brain in the context of human experience.” In truth, while chemical 

understanding of flavor has expanded tremendously since Brillat-Savarin, a complete and 

integrated comprehension of flavor development, perception, and preference still remains elusive 

(Bayarri & Costell, 2010; Roper & Chaudhari, 2017; Lahne, 2016).  

Despite incomplete understanding of the complexities underlying flavor, there is still 

much interest in measuring the trait as part of the plant breeding and trialing process. 

Increasingly, breeding and research programs want to evaluate flavor and eating quality, but 

agreement on appropriate methods in crop sciences is lacking. Traditionally, sensory science 

uses a highly trained, expert panel of judges to assess and describe flavor qualities. In some 

cases, crop research programs have replaced these tasting experts with breeder experts instead 

(P. Simon, personal communication, February 6, 2020). Others have begun to apply rapid 

sensory evaluation methods, which rely on untrained or semi-trained tasters (ex: a field harvest 

crew) and/or professional end-users like local chefs, bakers, and brewers (Dawson & Healy, 
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2018; Healy et al., 2017; Brookfield et al., 2011). Appropriate and reliable methods for sensory 

evaluation that are applicable to plant breeding and agricultural research are still being debated 

and evaluated, and new approaches will likely emerge. Using humans to evaluate flavor in crops 

is inherently difficult due to the intricacies of the biological and psychological systems that 

underlie flavor development, perception, and preference. This review focuses on these particulars 

with hopes of providing baseline knowledge for plant scientists working to evaluate and improve 

sensory and culinary qualities in fruits, vegetables, and grains. 

 

A Common Language: What is Flavor? 

 In everyday English, the terms taste and flavor are used interchangeably, but human 

physiologists would say the two are not the same. When someone asks, “does the food taste 

good?”, the questioner is likely referring to flavor rather than taste, despite their use of the word. 

Taste, referred to by itself, implies the five basic tastes – sweet, sour, salty, bitter, and umami 

(the meaty or delicious sensation associated with mushrooms, soy sauce, and parmesan cheese) – 

which are perceived by specific receptor cells located in taste buds on the tongue (Roper & 

Chaudhari, 2017). Notably, the existence of additional tastes (ex: for fats and oils, calcium) is 

still being investigated and debated (Heymann, 2019). But when it comes to flavor, taste is only 

one part. Aroma is another critical component of flavor; in fact, volatile odor molecules are what 

give fruits and vegetables most of their distinctive flavors (Wang & Seymour, 2017). Others 

consider mouthfeel or a food’s texture to be critical to flavor (Corollaro et el., 2014), and there is 

certainly some truth to eating with the eyes first, so appearance matters too (Bayarri & Costell, 

2010; Oltman et al., 2014; Deliza & MacFie, 1996). While taste is one crucial component of 

flavor, the latter term encompasses much more of the eating experience. 
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 When it comes to the quality of fruit and vegetables, flavor considers taste, appearance, 

smell, and texture, all of which are relevant to people’s preferences. If plant breeders and 

researchers are going to evaluate flavor using human tasting panels, common terms and clear 

definitions are necessary. The previously mentioned definition by Heymann et al. (1993) 

provides a good starting point, but additional details on human taste physiology might be 

informative for plant scientists. 

 Whether evaluating a plain fruit, vegetable, or a formulated recipe, it is helpful to think of 

the tasting sample as a type of matrix. Consider a tomato (Solanum lycopersicum) fruit for 

example. Generally speaking, it is made of cells that contain sugars, acids, salts, aromas and 

other molecules that contribute to flavor. These are the chemical stimuli Heymann et al. (1993) 

refer to in their definition. Understanding food as a matrix is useful when considering different 

crops or plant organs and how they might develop and/or release flavor molecules differently 

(ex: tomato versus broccoli). In vegetables, most volatiles are synthesized after cells are 

damaged from cutting or chewing which exposes enzymes to their substrates (Goff & Klee, 

2006; Bayarri & Costell, 2010). 

 When a slice of tomato is chewed, the tomato cells are crushed, spilling the contents into 

the mouth. Taste receptor cells are clustered in taste buds along the tongue’s epithelium, and 

their membrane receptors bind the molecules involved in sweetness, sourness, umami, saltiness, 

and bitterness as they are released from the tomato tissue (Roper & Chaudhari, 2017). Saliva and 

the fruit’s liquid create an aqueous solution that coats the tongue and taste receptors with their 

chemical stimuli (Fried, 2020). As the tomato tissue breaks down further, warm air circulating in 

the mouth and nose wafts the freed tomato aroma molecules (volatiles) so they bind to the 

receptors of olfactory cells lining the back of the throat and nasal cavity (Wang & Seymour, 
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2017; Olender et al., 2008). The tongue and mouth are also equipped with other types of nerve 

cells involved in flavor perception. The trigeminal nerve for example is responsible for sensing 

the cooling sensation of menthol in mint (Mentha spp.), the drying astringency of tannins in wine 

and tea, and the spicy burn from capsaicin in hot peppers (Capsicum sp.) and glucosinolates in 

brassicas (Bayarri & Costell, 2010; Roper & Chaudhari, 2017; Wieczorek et al., 2019; 

Meiselman, 1993; Fried, 2020). Some sensory nerves in the tongue and mouth are involved in 

tactile perception and assess texture and mouthfeel (Reed & Knaapila, 2010). Importantly, there 

is substantial variation in the taste and flavor-sensing machinery among humans which plant 

scientists should be aware of if they plan on using humans to evaluate flavor in their projects 

(Klee & Tieman, 2018; Meiselman, 1993; Reed & Knaapila, 2010). 

 The processing of taste and smell information is diagrammed in Figure 1.1. Multiple 

kinds of ligands can bind to the same receptor. For example, the membrane proteins of 

T1R2/T1R3 taste cells that perceive sweet stimuli can bind sucrose, fructose, glucose, sucralose, 

and a host of different sugars with varying affinities (Roper & Chaudhari, 2017). Odor molecules 

are the same way. The volatile safrole for instance was previously used to flavor root beer, 

toothpaste, and chewing gum because of its “candy shop” aroma (Kajiya et al, 2001; Amoore, 

1952). Safrole actually binds to at least four different types of olfactory receptors simultaneously 

(Amoore, 1952) explaining its complex and enticing smell. Unfortunately, safrole was later 

found to be carcinogenic, and therefore was banned by the FDA as a product additive (Kajiya et 

al, 2001). Manufacturers had to reformulate using multiple aroma additives to maintain the same 

general flavor and smell (Kajiya et al, 2001).  
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Figure 1.1 A diagram showing the general physiology behind smell and taste perception. 
Receptors in the mouth and nose perceive chemical stimuli in food before generating an 
electrical signal that travels to the brain for processing. (Fried, 2020). 

  

 The senses of taste and smell have evolutionary explanations. They give humans (and 

other animals) the ability to find nutrients and evaluate what they consume. For the most part, 

taste and odor receptors involved in flavor detection are G-protein coupled receptors (GPCRs), 

which when bound to an appropriate ligand, result in signal transduction and development of an 
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action potential (Olender et al., 2008; Avau & Depoortere, 2016; Knaapila et al., 2007). This 

electrical signal then travels to the brain for processing. Sensory nerves lead to the brain’s 

thalamus, which communicates with the frontal lobe – the brain’s control panel – and, ultimately, 

this is where the psychological experience of flavor is created (Avau & Depoortere, 2016; 

Olender et al., 2008; Soudry et al., 2011). Olfactory nerves are wired slightly differently than 

taste and touch nerves. Unlike other sensory cells that lead directly to the thalamus, olfactory 

signals travel through the amygdala and hippocampus first (Soudry et al., 2011). This means 

smell signals activate parts of the brain that control memory and emotions before they are 

integrated with other sensory information like taste, appearance, and texture. The brain is 

responsible for “touching up the final percept” and integrating all the signals, so flavor is 

experienced as a unified sensation and not as individual, disparate parts (O’Mahony, 1991). In 

this way, flavor involves an interaction between both the brain and the mind. While this makes 

for an enjoyable experience as an eater, for researchers, the role of the brain-mind interaction 

complicates matters.  

 Altogether, the brain and the mind take information from the senses about food we 

consume and put it into context with the body’s nutritional needs, cultural identity, past 

experiences and memories as well as the surrounding environment to come up with each 

individual’s experience of flavor. To be clear, flavor perception and preference are not solely 

determined by any inherent quality about the food or eater themselves, but rather the 

amalgamation of sensory, biological, socio-cultural, historical, and environmental information. 

Since much of this information is unique to each individual’s life experience and worldview, the 

same fruit or vegetables sample can evoke different impressions and responses. Understandably, 
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this poses challenges for scientists using humans to investigate flavor qualities in fruits, 

vegetables and grains.  

 

Evolutionary History of Flavor 

 While sometimes framed as part of the modern “Good Food Movement” in the United 

States (Finn, 2017), human interest and selection for flavor traits has been relevant since plant 

domestication. As human ancestors noticed and replanted desirable phenotypes of plants, they 

inevitably had an impact on flavor and its underlying genes. A typical feature of plant 

domestication syndrome is a reduction in secondary metabolites, particularly those perceived as 

toxic and/or bitter. Heiser (1988) proposes that there was very little intentional selection for the 

reduction of these bitter or harsh compounds and emphasizes that humans were quite adept at 

finding ways to reduce these unpalatable characteristics via cooking or processing. Examples 

include traditional practices to remove tannins from acorns (Quercus spp.) via grinding, washing, 

use of clay, or soaking, and the prolonged boiling or baking of taro (Colocasia esculenta) to 

denature the calcium oxalate crystals that irritate the mouth if eaten raw (Johns & Duquette, 

1991; Denham, 2011). In fact, cooking, processing, and preserving can completely alter the 

building blocks of flavor, so it should not be assumed that early humans intentionally rogued 

bad-tasting individuals.  

 Intentional selection for other traits may have had indirect consequences on flavor 

because domestication’s main features have all shown to have some relationship with various 

flavor-related components. The loss of natural dispersal mechanisms such as non-shattering seed 

and non-deciduous fruit has been linked to changes in fruit texture in both tomato and pepper 

(Paran & van der Knapp, 2007). More specifically, the PG (polygalacturonase) gene in tomato 
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and its ortholog S (softness) gene in pepper affect the texture of cell walls and deciduousness of 

fruits during ripening (Rao & Paran, 2003). Recessive alleles at these loci promote ripe fruit 

remaining on the plant as well as increased pericarp firmness, a legacy that persists today in 

American preferences for firmer tomatoes and crisp sweet peppers (Rao & Paran, 2003; Oltman 

et al., 2014). Additionally, during domestication humans selected against plant mechanical 

protections like the prickles displayed by wild tomato and eggplant relatives (Heiser, 1988; 

Hurtado et al., 2014), which surely improved their mouthfeel. 

 Selection for larger plant tissues whether roots, tubers, fruit, leaves, or stems also had an 

effect on flavor. Declining tomato flavor can be traced back to the earliest stages of human 

intervention and selection for larger fruit (Klee & Tieman, 2018) due to the simple fact that 

chemical flavor components become increasingly diluted as plant organ size increases. 

Additionally, linkage drag associated with selection for alleles conferring larger fruit size 

significantly altered fruit metabolite profiles, including the regulation of many volatile 

compounds (Zhu et al., 2018; Gao et al., 2019). Intentional selection for culturally important 

aesthetic or visual traits has shown to have flavor side effects. Zhu et al. (2018) found that pink 

tomatoes (popular in Asia), which resulted from a single gene change, had over 100 significantly 

modified fruit metabolites, some of which are known flavor contributors. In beans (Phaseolus 

spp.), cultural preferences for white seeds over black and red seeds significantly reduced tannin 

levels, which are both astringent and anti-digestive (Powell et al., 1977). Furthermore, selection 

for traits unassociated with the plant organ of interest, like more even and rapid seed 

germination, could also have impacted flavor during the domestication process (Heiser, 1988). 

For example, many bitter-tasting and toxic compounds inhibit seed germination (Bewley et al., 
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2013), so as humans selected for earlier sprouting seeds, they may have effectively and 

unconsciously selected against more acrid flavor phenotypes. 

 Even though flavor has become a focus for many modern plant breeders, the history of 

crop flavor and humans is long. It is important to recognize flavor has a functional and 

evolutionary role for plants, too. Seed distribution is imperative to survival. Brightly colored and 

tasty fruits, or at least those more palatable, might have enticed more seed dispersing animals 

than poor or off-tasting counterparts. Evolution of volatiles and their receptors in animals would 

have allowed long range signaling of ripe fruit to seed dispersers (Wang & Seymour, 2017). 

Plant breeders should consider that evolutionary and natural selective forces have worked 

alongside humans and random chance to shape a vast genetic potential for flavor within crop 

species and their wild relatives (Goff & Klee, 2006). But while flavor diversity in plants was 

developed over millennia, it seems humans have done an incredible job of reducing that diversity 

in the last century, although for some crops more than others (Wang & Seymour, 2017). The 

growing consumer focus on eating qualities and subsequent breeding for better tasting fruits, 

vegetables, and grains is largely a response to this decline in flavor quality (Klee & Tieman, 

2018).  

 Tomato acts as a posterchild for efforts aimed at improving flavor in fruits and vegetables 

because consumers are acutely aware of their poor flavor due to both genetics and the methods 

associated with industrial production (i.e. harvesting when green, cool storage, ethylene 

ripening) (Estabrook, 2012; Bergougnoux, 2014; Klee & Tieman, 2018). The story of tomato’s 

flavor genetics starts with domestication, a process that is estimated to have begun 80,000 years 

ago (Bergougnoux, 2014; Estabrook, 2012). During domestication and subsequent improvement 

phases, tomato underwent several major bottleneck events (Goff & Klee, 2006). While the plant 
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is native to coastal deserts of South America, domestication is believed to have occurred in 

modern-day Mexico after birds deposited seeds during seasonal migrations (Estabrook, 2012; 

Bergougnoux, 2014). As part of the Columbian Exchange, tomato seeds were brought to Europe 

in the 15th Century (Laudan, 2015). Because they looked similar to their poisonous European 

relative Belladonna and were absent from the Bible, Europeans rarely ate tomatoes and used 

them mostly for landscaping (Estabrook, 2012). The Italian word for tomato, pomodoro, 

originates from a steward’s description of them as “golden apples” (pomi d’oro) suggesting that 

varieties were likely yellow at the time (Estabrook, 2012). Tomato fruits were also reportedly 

“small and sour,” but gradually gained eating popularity in Spain, Italy, and France as a way to 

flavor food without expensive spices (Bergougnoux, 2014; Laudan, 2015). Nonetheless settlers 

brought their own cultivars when they colonized the modern-day United States. Altogether 

considered, much genetic diversity has been lost from tomatoes as people (and birds) moved 

them around the world. 

 In the mid-1800s United States, Alexander Livingston was a farmer, scientist, and 

seedsman with an affinity for tomatoes (Bergougnoux, 2014). He began crossing varieties 

brought from Europe to wild tomatoes in the Americas and eventually developed some of the 

most popular varieties in the country that were notably larger and sweeter (Victory Horticultural 

Library, 2011). Livingston is credited with popularizing the persisting cultural ideals of what 

tomatoes should look and taste like in the United States (round, red and sweet) while also 

promoting their culinary use among the country’s chefs (Victory Horticultural Library, 2011; 

Bergougnoux, 2014). He was a major instigator for the next century and a half of tomato 

breeding as the crop has become one of the most consumed vegetables across the globe. While 
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tomatoes had undergone a massive narrowing of genetic diversity, Livingston began the process 

of reincorporating some of this diversity by making new crosses. 

 In Livingston’s lifetime, before the rise of the global commodity market and the 

inventions of synthetic fertilizers and hybrid seed, the American food system was characterized 

by mostly small- and mid-scale farmers growing food consumed by local eaters. Today, large-

scale operations dominate the market by growing incredible volumes of produce before 

transporting them around the world. Similarly, before the trans-global food system that rules 

today, farmers produced more seed on-farm, and they selected varieties that produced well and 

fit the eating quality expectations of their local customers (Estabrook, 2012). Many heirloom 

varieties in today’s seed catalogs serve as a reminder of a pre-industrial time when good flavor 

was considered necessary for a variety’s marketability. The rise of the global food system has 

indeed greatly changed breeding priorities around flavor.  

 Instead of looking for varieties that are locally well-adapted and tasty to local eaters, both 

breeders and growers have been forced to prioritize traits for the industrial food system. In 

tomatoes, marketable yield, disease resistance, shelf life, and ability to ship long distances have 

all been breeding goals (Bergougnoux, 2014; Estabrook, 2012). Perhaps unexpectedly, Gao et al. 

(2019) used a pan-genome to find that the genetic diversity in modern tomato varieties is larger 

than in heirlooms, so the regaining of genetic material started by Alexander Livingston in the 

1800s has continued. A key difference, however, is that little genetic material related to flavor 

has been recovered. Introgression of genes for abiotic stress tolerance and disease resistance 

from wild relatives were hallmarks of tomato breeding throughout the 20th Century (Gao et al., 

2019; Bergougnoux, 2014), which greatly benefited grower yields. But improving sensory 
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qualities has largely been ignored until recently (Klee & Tieman, 2018; Gao et al., 2019; Wang 

& Seymour, 2017).  

 The story of tomato is not necessarily unique, and certainly all crops have their individual 

histories and challenges. Tomato flavor, or lack thereof, has become a top complaint of 

consumers (Klee & Tieman, 2018). But brassica breeding has resulted in stronger-tasting 

cauliflower cultivars, which has been linked to decreased consumption (Engel et al., 2002). For 

most domesticated food crops, the tradeoff is a narrowing of genetic diversity, but priorities in 

the industrial food system have exacerbated the loss in flavor because of over-focus on a few 

traits (Wang & Seymour, 2017; Estabrook, 2012). Additionally, the genetics underlying flavor 

remain somewhat forgotten and underexplored. Of course, better genetic understanding of flavor 

in crops means little if it is not integrated with insights about human flavor perception and 

preference, which is why more work is needed on approaches to flavor evaluation in the context 

of crop research. 

  

The Short History of Formal Sensory Science  

 While flavor’s evolutionary relationship between plants and people has gone on for 

millennia, formal sensory science is not yet a century old. Prior to the 1930s, the methods and 

technology to evaluate food and sensory qualities had not been standardized (Heymann, 2019). 

The first sensory science experiments looked at acceptance of military rations by enlisted troops 

with a goal to reduce the number of soldiers who skipped meals because they didn’t like the food 

(Pangborn, 1964; Bartoshuk, 1978).  By 1937, the American Chemical Society presented its first 

panel on “Flavor in Foods,” and the field was poised for rapid expansion (Bartoshuk, 1978; 

Heymann, 2019). 
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 Just like in agriculture and plant breeding, the early 20th Century was a time of rapid 

industrialization, segmentation, and specialization for the food industry. As economies of scale 

increased, sensory science emerged from business interests aimed at gaining larger market shares 

by consistently appealing to as many consumers as possible (Lahne, 2016; Heymann, 2019). An 

executive of a baking company, W. Platt in 1931 said, “all our millions of dollars worth of 

business depends on that little sensation which our products make upon the tongues of our 

customers” (Pangborn, 1964). According to Elaine Skinner in Lawless and Heymann (2010), 

sensory science is the “child of industry,” and its insight is to safeguard the “meeting of 

consumer expectations and a greater sense of marketplace success,” not to inform anything 

fundamentally true about food. In other words, the needs of the global food industry have driven 

both research topics and methods for sensory and flavor evaluation (as well as plant breeding). 

They have added much to the understanding of food properties but little applicable value for 

flavor evaluation in plant sciences and non-industrial contexts. Despite problems with sensory 

science’s origins, assumptions, and methodologies, their descriptive methods are still largely 

used as benchmarks of scientific validity and rigor for flavor evaluation. 

 Sensory science is a unique field because it has never concerned itself with developing a 

body of theoretical knowledge (Martens, 1999; Meiselman, 1993; Lahne, 2016), which typically 

plays a fundamental role in a scientific discipline. Instead, sensory science has historically 

borrowed existing theories from physiology and psychology that interpret human behavior and 

experiences as responses to an objective reality (Martens, 1999); it left little room for social 

and/or cultural influences. Likewise, sensory scientists were originally trained in vision and 

audition before applying equivalent research techniques to taste, touch, and smell (Pangborn, 

1964; Lahne, 2016). Interestingly, in evaluating apple texture, Corollaro et al. (2014) mention a 
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0.98 correlation between using a texture analyzer and using acoustic measurements, and it is 

unclear if this is coincidence or not. 

 Formal sensory scientists understand that biochemical parts of food are stimuli that 

induce a psychological experience called flavor. But their paradigm has sought to bring the 

whole process under experimental control (Lahne, 2016). For example, tasters are isolated from 

one another or must evaluate samples under red light so they cannot be influenced by differences 

in appearance. Results are only considered meaningful if they are statistically significant and 

done in a controlled environment (Pangborn, 1964; Koster, 2009), which in effect means a flavor 

component only becomes tractable when it is somehow amenable to this type of experimentation. 

One has to wonder if this approach transfers well into real-life eating situations with much more 

complex stimulation. Formal sensory science assumes flavor and human perception can be 

reduced to its constitutive parts (Martens & Martens, 2007; Klee & Tieman, 2018), and these 

parts are separable from the eating context making them portable and predictable in others 

(Lahne, 2016). But in fact, it seems clear that flavor is an emergent phenomenon, where the 

whole is greater than the simple sum of its parts. 

 While formal sensory scientists typically hold that flavor is an intrinsic property of food 

and eaters are passive receivers of both these stimuli and the psychological experience of flavor 

(Lawless & Heymann, 2010), there are some social scientists who believe taste is a property 

inherent to eaters instead (Hennion, 2007). The reality is likely somewhere in between, as Lahne 

and Trubek (2014) write, there appears to be an “active and reflexive” process between objective 

properties of food, the way they are processed in each individual’s brain, and extrinsic factors as 

well (Fernquist & Ekelund, 2014; Piqueras-Fiszman & Spence, 2015). 
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 The socio-cultural factors that affect flavor perception and preference are considered 

biasing factors by formally trained sensory scientists. In fact, central to formal sensory science is 

attempting to separate the objective truths about food from the inner experiences of tasters and 

other “biasing” stimuli (Lawless & Heymann, 2010). Importantly then, the field makes two 

critical assumptions. First, their standard practices and methods are valid and robust for finding 

the sensory properties inherent and legitimate to the research question (Lahne, 2016). Recall that 

this assumption is without the guidance of a unique theoretical body of knowledge and methods 

that were adapted from studies of vision and audition. Second, sensory scientists assume that 

physical and chemical properties are sensorially relevant by default even though their 

correlations with perception might not be as strong as one might expect (Martens & Martens, 

2007; Klee & Tieman, 2018; Tieman et al., 2012; Corollaro et al., 2014).  

 To their credit, sensory science has recognized some of its own shortcomings and begun 

to reflect on their assumptions. More recently, the field’s attention has turned to the ecological 

validity of sensory analysis and its link to consumer experiences (Piqueras-Fiszman & Spence, 

2015). Much of this has been driven by a realized “mismatch [between] perceived requirements 

[for] rigorous sensory science research and empirical reality” (Lahne, 2016). As their popularity 

with consumers skyrockets, artisanal products like cheese and beer are examples of foods where 

application of traditional sensory methods appears to fall short. This is because artisanal products 

are not homogenous (in fact, variability in this context is valorized), and they have extrinsic 

values that are perceptible to eaters too (Lahne & Trubek, 2014; Piqueras-Fiszman & Spence, 

2015). In Lahne and Trubek (2014), eaters said an artisanal Vermont cheddar tasted good partly 

because it was produced in small batches with a particular care for the livestock, people, and 

land. These factors are clearly influential in human discernments about flavor and preference 
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(Piqueras-Fiszman & Spence, 2015; Fernquist & Ekelund, 2014), but they are largely ignored by 

sensory scientists despite the embedded nature of producers, eaters, and food in society. These 

realizations have led some sensory scientists to compare formal sensory methodologies to an 

overfit statistical model. In other words, sensory science is so reliant on the information and 

imperatives imposed by the industrial food system that their application is not feasible in 

alternative contexts (Lahne, 2016).  

 These are relevant considerations for plant breeders and researchers looking at evaluating 

or improving flavor. Harker et al. (2009) note the natural heterogeneity of fruits and vegetables 

will often overwhelm detection of significant differences in triangle tests with trained sensory 

experts. Triangle tests present three samples to a taster, two of which are the same, and the 

assessor then has to determine which sample is different based on flavor (Bayarri & Costell, 

2010). Admittedly, traditional methods may not be the best, but neither are they useless. Plant 

researchers should not be discouraged if formal sensory analysis is not feasible or doesn’t reveal 

any significant results because they are only one tool in a toolbox. At the s 

ame time, there appears immense opportunity for plant scientists to apply and develop new tools, 

particularly those geared toward non-industrialized contexts. Dawson and Healy (2018), for 

example, wrote a review for plant breeders on rapid sensory evaluation methods that eliminate or 

reduce training obligations, although rapid methods are often critiqued for not being rigorous 

enough. While research groups like the Seed to Kitchen Collaborative at the University of 

Wisconsin have started working with these tools to examine their utility and reliability, the 

tendency for plant scientists to try and mimic formal sensory analysis techniques still remains 

widespread. 
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Flavor Development in the Plant 

 As alluded to already, a plant’s genotype plays a fundamental role in the synthesis and 

accumulation of flavor-related compounds. Many studies have shown variety (genotype) has a 

significant effect on taste-related traits like amounts of sugar and titratable acidity, which are 

thought to be strongly correlated with perceived sweetness and acidity, respectively. In some 

species, specific genes involved in tastant (molecules that activate taste receptors) metabolism 

have been identified. In tomato, single nucleotide polymorphisms (SNPs) have been identified 

within an extracellular invertase gene that lead to significantly higher levels of sugar 

accumulation within the fruit (Klee & Tieman, 2018). Panthee et al. (2012) also found tomato 

cultivar to have a significant effect on soluble solids (a proxy for sugar content) and titratable 

acidity, however, there is no obvious genetic clustering of good versus bad-tasting cultivars, 

which underscores the complexity of untangling chemical stimuli and relating them to people’s 

preferences (Tieman et al., 2012). In grafting studies of tomato, watermelon (Citrullus lanatus), 

and cucumber (Cucumis sativus), rootstock genotype had a significant effect on fruit firmness as 

well as vitamin C and soluble solids (Rouphael et al., 2012). In broccoli (Brassica oleracea), 

genetic links have been found between low sugar levels and high glucosinolates, which humans 

perceive as bitter (Rouphael et al, 2012).  Additionally, Bunning et al. (2010) found lettuce 

genotype had a significant effect on specific flavonols and phenolics that were correlated to 

perceived bitterness among tasters, so it seems quite apparent genotype plays a role in flavor 

across numerous crops. 

 Sugar content, while a seemingly straightforward way to approximate sweetness, is a 

quantitative trait itself (Tieman et al., 2012). It is impacted by other gene pathways and products, 

too, like those controlling pigment synthesis and storage. Pigments underlie important visual 
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characteristics of fruits and vegetables that do influence people’s preferences (see section on 

“Human Flavor Preferences”). They also function as antioxidants and in light transduction within 

the plant body (Paran & van der Knaap, 2007; Mustilli et al., 1999). The uniform ripening 

mutation (u) in tomato causes changes in the accumulation and distribution of fruit chloroplasts, 

which eliminates green shoulders but ultimately leads to lower sugar content than in non-mutants 

(Powell et al., 2012). On the other hand, green flesh (gf) and chlorophyll retainer (cf) tomato 

mutants retain their fruit chloroplasts, which give fruit a brown coloration and increased sugar 

levels (Paran & van der Knaap, 2007). High pigment (hp1 and hp2) tomato mutants have 

significantly more total plastids, which leads to peculiar plant architecture but also more sugar, 

carotenoids, flavonoids and vitamins (Mustilli et al., 1999; Rouphael et al., 2012). Some pigment 

molecules, like anthocyanins in grape (Vitis vinifera) and bitter melons (Momordica charantia), 

have shown to be perceived as bitter (Paissoni et al., 2018). In fact, some anthocyanins are 

among a group of molecules that have the ability to bind to multiple types of sensory receptors 

including taste (bitter), trigeminal receptors (astringency), and odor receptors (Paissoni et al., 

2018; Wieczorek et al., 2018; Reed & Knaapila, 2010).  

 For some, the prospect of increasing sugars or reducing bitter compounds in fruits and 

vegetables to improve their taste is enticing. Many breeders, however, recognize the fundamental 

metabolic tradeoffs between increasing sugar and decreasing yields, which is why so many 

breeders are focusing efforts on improving volatiles, especially in fruit crops like tomatoes 

(Wang & Seymour, 2017; Tieman et al., 2012). In attempts to predict consumer liking for fruits 

and vegetables, studies have found the most successful models utilize volatile measurements 

(Bayarri & Costell, 2010), but the resources needed to quantify volatiles in a breeding program 

are similarly cost prohibitive as employing formal sensory evaluation with trained tasters. Klee 
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and Tieman (2018) say it is possible to identify genes regulating the synthesis of flavor volatiles 

as well as alleles of those genes that promote a more flavorful composition. While some 

researchers advocate strongly for genetic approaches to improving flavor, the process of relating 

chemical stimuli to human preferences and perceptions is awash with complexity (Klee & 

Tieman, 2018; Tieman et al., 2012; Wang & Seymour, 2017). Still, these types of key flavor 

genes and desirable alleles have been identified in tomato and strawberry (Fragaria x ananassa) 

as ones lost during domestication (Gao et al., 2019; Goff & Klee, 2006).  

 A rare allele in the promoter region of a tomato lipoxygenase gene (TomLoxC) that 

catalyzes the synthesis of 5- and 6-carbon volatiles (mostly “green leaf” aromas) was found in 

91% of Solanum pimpinellifolium (tomato’s predecessor), but only 22% of domesticated 

heirloom varieties and 15% of modern hybrids (Gao et al., 2019). And the volatile profile of 

cultivated strawberry differs markedly from its wild relatives due to the loss of a single enzyme 

that synthesizes the volatile methyl anthranilate, which is responsible for fruity grapelike aromas 

(Goff & Klee, 2006). Even if relevant flavor genes and alleles can be identified, the flavor 

phenotype is still highly influenced by the environment. For some flavor-associated traits like 

titratable acidity in tomato, studies have calculated relatively high heritability (87%), while 

heritability estimates for other traits such as lycopene are much less (16%) (Goff & Klee, 2006; 

Panthee et al., 2012; Klee & Tieman, 2018). The ways in which growing environment can affect 

flavor-related chemicals in plants seem endless in the literature. Perhaps obviously, large 

amounts of water can dilute flavor of fruits and vegetables, but temperature and light both have 

tremendous impacts on organoleptic qualities, too. Higher light intensities have shown to 

increase levels of sugar, ascorbic acid, and dry matter in tomato, lettuce (Lactuca sativa), sweet 

pepper (Capsicum annuum), strawberry, and melon, while lower light intensities can promote 
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production of antinutritive and bitter compounds like oxalates in Amaranthaceae crops (Budding 

et al., 2010; Rouphael et al., 2012). Colder growing temperatures affect the texture, taste and 

smell of tomatoes and also promote more bitterness in cucumbers and broccoli (Wieczorek et al., 

2019; Rouphael et al., 2012). 

 The environment’s effect on flavor includes cultural techniques used by the grower and 

field-specific factors like soil composition and nutrients. Tomatoes grown in glasshouses have 

lower levels of phenols compared to field-grown counterparts in the United Kingdom, whereas 

high tunnels increase overall quality of organically grown tomatoes in the Midwest United States 

(Rouphael et al., 2012; Healy et al., 2017). Increased levels of nitrate fertilizer led to reduced 

sugars and antioxidants but increased titratable acidity in tomatoes and habanero peppers 

(Capsicum chinense) (Benard et al., 2009; Nunez-Ramirez et al., 2011). The color of reflective 

mulches used to grow basil (Ocimum basilicum) significantly affected leaf succulence, aroma 

compounds, and total phenolics in the leaves (Loughrin & Kasperbauer, 2001).  Banchio et al. 

(2009) found that presence of Bacilus subtlis, a plant growth promoting rhizobacteria, increased 

certain volatiles in basil leaves as well. Even plant stress responses can act to influence flavor-

related chemicals as seen with leafhopper tea. When tea leaves (Camellia sinensis) are bitten by 

leafhoppers, it induces a stress response that produces a perceptible change in flavor once 

brewed (Scott et al., 2020). This flavor is highly prized for being both delicious and unique 

(Scott et al., 2020). 

 So even if researchers can identify key genes and alleles involved in flavor development, 

there still remains serious questions about the expression of those genes in various environments 

and under different growing conditions. Naturally, this is made more complicated by gene x 

environment (GxE) interactions. Mostafa et al. (2015) found a significant GxE effect on allicin 

20



content in 104 garlic (Allium sativum) accessions grown in Egypt and China. And in a diverse set 

of 42 tomato varieties grown in three locations, the GxE effect was significant on soluble solids, 

titratable acidity, and lycopene (Panthee et al., 2012). Clearly plant scientists have their work cut 

out for them in efforts to regain lost flavor in crops, since not only are the underlying genetics 

complex, their expression is highly mutable to a seemingly endless stream of environmental and 

horticultural factors. 

 

Flavor Perception by Humans 

 While genetic, environmental, and horticultural factors can impact the production and 

accumulation of plant flavor compounds, human perception of these stimuli is not equal. In fact, 

Reed and Knaapila (2010) say, “perhaps no single human trait has as much person-to-person 

differences as abilities to taste and smell,” and human genetic differences are at least partially 

responsible for differences in perception of the same tasting sample (Wieczorek, 2019). Each 

taste bud on the tongue is made up of 50-150 taste receptor cells, and each taste receptor cell 

bears one type of taste receptor (i.e. sweet, sour, umami, bitter, salty) (Roper & Chaudhari, 

2017). Some receptor genes like those for umami are polyallelic meaning there is also within 

family variation of taste receptors; different alleles for umami receptor genes make some people 

unable to taste monosodium glutamate (MSG) for example (Reed & Knaapila, 2010). Roper and 

Chaudhari (2010) report that the number and distribution of taste buds and receptor cells within 

them, as well as variants of membrane receptors are all under genetic control. Such observations 

have led comparative physiologist to describe each person as living in their own “individual taste 

world” (Roper & Chaudhari, 2017). For example, taste and odor thresholds – the minimum 

amount of a stimulus to result in a perceptible sensation – vary widely from person-to-person, 
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and the combinatory nature of receptors and ligands can easily elicit a response at sub-threshold 

levels (Klee & Tieman, 2018; Reed & Knaapila, 2010; Roper & Chaudhari, 2017). Formal 

sensory science seeks to mitigate this person-to-person variation with training (Lawless & 

Heymann, 2010), however, this reduces the ability to generalize results to untrained populations 

of everyday eaters (Pangborn, 1968; Lahne, 2016), which is the group crop researchers are most 

interested in. 

 The term “super taster” is ubiquitous in the sensory science literature, and in fact, further 

stratification can be found that differentiates tasters, non-tasters, medium tasters, and super 

tasters (Bartoshuk, 1978; Klee & Tieman, 2018; Wieczorek, 2019). Super tasters are so named 

because of their high sensitivity to two bitter compounds – 6-n-propylthiouracil (PROP) and 

phenylthiocarbamide (PTC) – neither of which are found naturally in food (Reed & Knaapila, 

2010; Wieczorek, 2019). The sensitivity to these two chemicals lies in the TAS2R38 gene (a 

bitter taste receptor), which is one of at least 25 in the TAS2R gene family (Avau & Depoortere, 

2016). This family of bitter receptors is activated by many different molecules, and some of 

these molecules can bind to multiple types of TAS2R receptors (Avau & Depoortere, 2016; 

Wieczorek, 2019). The relationship between PROP, PTC and TAS2R38 has been intensely 

studied; PTC in particular is unique because it exclusively binds to the TAS2R38 receptor (Reed 

and Knaapila, 2010). Altogether considered, these studies give relatively little insight into the 

impact of genetics on final bitter sensitivity, as the “nontaster” form of TAS2R38 still might be 

able to taste other bitters (Ava & Depoortere, 2016). Likewise, there is much more to know 

about bitter tastants themselves. Wieczorek et al. (2019) say trained sensory panels differentially 

perceive and describe bitterness from different glucosinolates in broccoli. These may be 

important insights for plant breeders and researchers looking at the chemical building blocks of 
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flavor within plants, but many questions still remain about the implications this has for using 

humans to evaluate flavor in crop research. 

 For perception of other tastes, like sweetness, there is a better sense of the role of 

genetics. For example, alleles in the promoter-region of sweet receptor gene Tas1r3 have shown 

good ability to predict a person’s sensitivity to sweet stimuli, but it is known other genes like 

those involving secondary messengers (ex: gustducin) are also involved (Robino et al., 2019; 

Reed & Knaapila, 2010). There is evidence that sour perception also has a genetic component, 

but little research has sought to investigate specifics, and scientists have yet to untangle the 

physiological machinery of salt perception let alone any potential underlying genetics (Roper & 

Chaudhari, 2017; Reed & Knaapila, 2010; Robino et al., 2019).  

 Both sweetness and bitterness perception can be enhanced or mitigated by the presence of 

certain volatiles (Wieczorek et al., 2019; Baldwin et al., 2008; Wang & Seymour, 2017), but this 

requires appropriate odor receptors to be present in the taster’s nose and throat. In the human 

genome, the family of olfactory receptor (OR) genes is one of the largest and has shown to 

contribute to variation in the ability to smell certain odorants. There are nearly 400 functional OR 

genes in humans along with an equivalent number of pseudogenes, and about 60 others that have 

been found with both functional and nonfunctional variants (Klee & Tieman, 2018; Olender et 

al., 2008). OR genes can be found on the X sex chromosome and all somatic chromosomes 

except 20 (Olender et al., 2008). As described earlier with safrole, ORs work combinatorially 

and for the most part they are broadly tuned to respond to a wide range of volatile ligands (Klee 

& Tieman, 2018; Tesileanu et al., 2019). The relatively small effect of an allele change in a 

human OR gene highlights the complicated nature of the sense of smell (Olender et al., 2008). 
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 Using 26 families in Finland, Knaapila et al. (2007) came to interesting conclusions when 

they examined the heritability of olfactory-related traits. Unlike taste traits, they estimated very 

low heritability for the ability to perceive lemon and chocolate aromas, but high heritability for 

pleasant responses to cinnamon smells, which they mapped to chromosome 4 (Knaapila et al., 

2007). Just like with plants and their synthesis of flavor molecules, genetics do not explain the 

entirety of human flavor perception. Age, education, occupation, socio-economic level, health 

and smoking history are some of the many characteristics that can modify responses to sensory 

stimuli (Pangborn et al., 1988; Deliza & MacFie, 1996; Fernquist & Ekelund, 2014). Children 

appear to have more intense bitter and sweetness responses compared to adults (Wieczorek et al., 

2019), and overall taste and smell sensitivity declines as people get older (Pangborn et al., 1988; 

Reed & Knaapila, 2010). Education can dictate which and how many words a person uses to 

describe and understand a food and its properties, while the language itself can have bearing too. 

In Japanese, there are more than 400 words used to describe food texture, while only about 100 

in English (Nishinari et al., 2008). It is estimated that on average humans can differentiate over 1 

trillion smells, but surely there are not enough words in any language to distinguish each one 

separately! 

 Differences in perception are also attributed to seemingly benign factors such as rates of 

respiration while eating, or how hard and fast someone chews before swallowing, or slight 

differences in anatomy of the mouth, nose, and throat (Bayarri & Costell, 2010; Heymann et al., 

1993). Taste perception and trigeminal nerve response are influenced by a multitude of factors 

including the food’s temperature, altitude, background noise, or what vessel samples are 

presented in (Roper & Chaudhari, 2017; Spence et al., 2014; Piqueras-Fiszman & Spence, 2015). 

Sensitivity to bitterness in cauliflower has been linked to consumption amount (Wieczorek et al., 
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2019), and plant-based foods enhance the expression of bitter receptor genes (Medawar et al., 

2019). In fact, nerve cells, especially olfactory receptor cells, are regularly replaced in the mouth, 

nose and throat. The types and distribution of receptor cells can change in orders of several 

magnitude over time (Tesileanu et al., 2019; Fried, 2020). Recently Tesileanu et al. (2019) have 

proposed that this is an adaptive mechanism for responding to changing chemosensory 

environments. In other words, human gene expression changes in response to chemical signals 

from the environment – including in food – to alter the types and distribution of sensory cells. 

This explains why systematic and repeated exposure to odorants can increase sensitivity to them 

(Tesileanu et al., 2019; Reed & Knaapila, 2010; Baldwin et al., 2008).  

 If the cellular machinery involved in flavor perception changes regularly, then surely this 

has implications for its evaluation in crops. It also gives rise to more questions about formal 

sensory analysis training and calibration protocols. The training of panelists in sensory science is 

supposed to reduce the amount of variation attributable to differences in taste perception, but few 

studies have been published on the effect of training, and some have shown inconsistencies of 

professional tasters over time (Lahne, 2016; Corollaro et al., 2014). Even with the use of trained 

sensory experts, the effect of taster is still frequently statistically significant, and convention has 

been to place blame on the abilities of tasters rather than the methods (Corollaro et al., 2014; 

Meiselman, 1993; Pangborn, 1968). This is all the more reason for researchers in the plant 

sciences to explore and describe new approaches to flavor evaluation in contexts other than 

industrial food production. 
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Human Flavor Preferences 

 Ultimately, improving flavor in crops is fundamentally related to human preferences, so 

understanding how preferences are formed will be helpful for plant scientists in these endeavors. 

Perhaps unexpectedly, there are genetic components to human smell and flavor preferences, 

some of which are related to receptor variation (Robino et al., 2019; Knaapila et al., 2007). For 

example, two SNPs in the OR7D4 gene are responsible for different perceptions of androstenone, 

a volatile found in male pig meat: individuals with one gene variant describe the aroma as “foul” 

and “sweaty,” while people with another report “pleasant floral” aromas (Robino et al., 2019). 

Likewise, variation in the OR6A2 gene has been correlated to dislike of cilantro (Coriandrum 

sativum) because of perceived soapiness (Robino et al., 2019). There are a wide range of 

influences that affect human preferences and aversions, and the historic approach of using 

averages and consensus metrics in sensory science can belie the importance of different 

preference criteria (Pangborn et al., 1988; Meiselman, 1993; Bayarri & Cowell, 2010).  

 Preference development has been shown to begin in utero as nutrients and volatiles from 

a mother’s food are passed to the baby (Goff & Klee, 2006), but overall, humans are born with 

relatively few innate preferences (Pangborn et al., 1988). Newborns show a preference for both 

sweet and fatty stimuli as well as mildly salty solutions, but they show aversions for bitter and 

sour tastes (Reed & Knaapila, 2010). This makes sense because taste has evolved as a way to 

evaluate the composition of foods; fats and sugars communicate energy-richness, and salt is 

important for electrolyte balance, while bitterness and sourness can indicate the presence of 

toxins or food spoilage (Reed & Knaapila, 2010; Roper & Chaudhari, 2017). But preferences and 

aversions retain a great deal of plasticity throughout lifespans because they are sensitive to 

modification from lived experiences, which sometimes work unconsciously (Myers & Sclafani, 
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2006). Natural preferences are shaped over time by nutritional factors and various social and 

cultural constructions that have been elaborated over generations. 

 The volatile compounds that give fruits and vegetables many of their distinct sensory 

characteristics are largely derived from essential nutrients like fatty acids, amino acids, and 

antioxidants like glucosinolates and carotenoids that are beneficial for human health (Bayarri & 

Costell, 2010; Wang & Seymour, 2017). In that sense, Goff and Klee (2006) say plant volatiles 

can be thought of as “positive nutrient signals that communicate health benefits.” Perhaps 

surprisingly, taste and odor receptors are not only located in the mouth, nose, and throat. They 

have been found in the lining of the gastrointestinal tract, in respiratory system epithelia, on the 

surface of the brain, and even in male testes (Avau & Depoortere, 2016; Roper & Chaudhari, 

2017). While not completely figured out yet, there appears to be a type of “back door” 

communication between the body and brain about nutrients that are consumed in food, and this 

can be a mechanism by which the brain learns to prefer certain foods and flavors over others 

(Goff & Klee, 2006). Myers and Sclafani (2006) refer to this as “flavor-nutrient conditioning,” 

which is sensed post-ingestion. In fact, there are plenty of documented instances where animals 

seemingly learn to recognize and select more nutrient dense foods over others (Sclafani & 

Ackroff, 2012). The relationship with flavor, however, is at this point unclear.   

 Food preferences can be affected by a variety of learning mechanisms and environmental 

factors like dietary habits, personal experiences, culture, religion, and physiology (Wieczorek et 

al., 2019; Wright et al., 2001; Pangborn et al., 1988; Deliza & MacFie, 1996; Fernquist & 

Ekelund, 2014; Piqueras-Fiszman & Spence, 2015). Numerous studies have pointed out an 

exposure effect – the more times a person has encountered a food or flavor is positively 

correlated to acceptance and liking (Myers & Sclafani, 2006; Deliza & MacFie, 1996). Generally 
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speaking, humans exhibit innate neophobia, although openness to new things has been linked to 

both geography and culture (Meiselman, 1993; Wright et al., 2001). Many encounters are 

required for a person to develop a preference compared to the small amount of exposure 

necessary to develop a strong aversion (Goff & Klee, 2006). Preferences and aversions can also 

arise from other associations and conditioning besides nutrients. For example, rewarding or 

distracting children with candy can give rise to preferences for particular flavorings and more 

intense sweetness (Cervellon & Dabe, 2005; Robino et al., 2019). Likewise, an aversion can 

easily develop from a bout of food poisoning or toxicity (Myers & Sclafani, 2006). 

 Another factor affecting liking is whether a food meets expectations, which also relates to 

a person’s history of use and experience (Meiselman, 1993; Deliza & MacFie, 1996; Piqueras-

Fiszman & Spence, 2015). This is largely where novel colors, shapes, and the appearance of 

fruits and vegetables can drive eaters to reject them. For example, in a roundtable at the 2019 

Organic Vegetable Production Conference (Madison, WI), organic farmers lamented that many 

customers complained about tomato flavor but were also unwilling to buy any non-red tomatoes 

because their unfamiliar color. This seems to be a popular preference in the United States. 

Preference mapping is a way to segment a population into smaller groups that share common 

determinants of preference to better understand their buying and eating decisions (Greenhoff & 

MacFie, 1994). Using preference mapping of tomato consumers, Oltman et al. (2014) identified 

the largest consumer segment had very strong priorities for red tomatoes and rejected soft 

textures, but their preferences were not determined by other sensory qualities. The next largest 

group’s preferred firm, crisp tomatoes with few seeds but showed no preferences related to color 

or external appearance. 
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 American partialities for red and firmer tomatoes are one example of how culture can 

affect food preferences in subtle ways. While the senses have evolved for humans to assess their 

environments, food and flavor are about more than just biology; food is also a way that humans 

indulge themselves, connect to others, and search for identity through consumption (Wright et 

al., 2001; Hennion, 2007; Fernquist & Ekelund, 2014). Individual and cultural food preferences 

are inextricably linked to art, design, media, and marketing that all signal what food should look 

and taste like (Piqueras-Fiszman & Spence, 2015). Additionally, art and media have not only 

historically implied what food should look like, but they also portrayed who should be eating it. 

Beginning in the 1980s, French sociologist Bourdieu wrote several papers on how food was used 

to advertise class and social standing throughout history (Wright et al., 2001), and Margot Finn 

(2017) has extended this idea to the modern “Good Food Movement” in the United States. She 

and others argue that the development of connoisseurship is a way that people attempt to assert 

class and status without money or political power (Finn, 2017). As Bourdieu famously said, 

“taste classifies, and it classifies the classifier” (Wright et al., 2001). Food preferences have been 

used as a way to characterize people in different social strata, too. For example, throughout the 

19th Century in Britain, having a sweet tooth was associated with the working class because they 

did not possess the prowess to elevate their tastes beyond the visceral pleasures of sugar (Wright 

et al., 2001). In a more modern example, the rise of vegetarianism in women has been explained 

as an unconscious expression of control over her own body (Medawar et al., 2019). Indeed, at 

least part of the impetus for current breeding work that prioritizes better flavor is socially based, 

so clearly more than just physical and chemical properties of plant parts are involved. 

 In her book Cuisine and Empire, Rachel Laudan (2015) retells world history from the 

perspective of cuisine, and how food has been used to assert power and dominion over others as 
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various empires set out to conquer the world. She writes much about religion and how it has 

shaped regional cuisines and cultural food preferences. For example, the rise of Protestantism in 

Britain created widespread disavowal of sensual pleasures including from food, which led to the 

relatively unadorned boils and roasts that characterize much of British cuisine (Laudan, 2015; 

Wright et al., 2001). And the arrival of Buddhism in Japan created an emphasis on simple, mildly 

flavored and vegetable-focused dishes (Laudan, 2015). Even though this is ancient history, these 

factors still influence people’s food preferences and their liking of different crop cultivars. 

Historical events have helped form the traditions and foodways that at least partially inform 

individual identities. As new foods – or new crop cultivars – are tasted, the interaction between 

brain and mind cannot help but compare them to past memories and experiences which 

inevitably tug on emotions. Anecdotally for example, at a public tomato tasting event in 2019 

(Farm to Flavor, Madison, WI), one taster pointed out their favorite variety and explained it was 

because the texture reminded them of tomatoes in their home country of Brazil. This poses a 

problem for understanding flavor as an objective measurement for plant scientists because it 

appears there may be no such thing. 

 Pangborn et al. (1988) were some of the first to study differences in aroma preferences 

across the globe. Perhaps expectedly, they found that different geographic areas had preferences 

for some smells over others, and the preferred smells differed distinctly by region (Pangborn et 

al., 1988). The researchers were unable to determine if preferences fell along geographic or 

cultural lines, and follow-up studies have had similar difficulty in cleaving the distinction. 

Geographic determinants would be more specific to a physical place such as native flora and 

fauna, whereas cultural determinants would include things like foodways, and obviously there is 

much overlap between the two (Pangborn et al, 1988; Wright et al., 2001). 

30



 Advancements in science and nutrition have further complicated understanding how 

people develop preferences (Piqueras-Fiszman & Spence, 2015). In a meta-analysis of studies 

looking at consumer liking in kiwifruit, Harker et al. (2009) found preference differences for 

eaters in Japan versus those in New Zealand, who were overall more accepting of soft fruit. The 

authors found an interesting subsection of New Zealand consumers who preferred blander and 

less sweet kiwifruits whom they hypothesized ate the fruit for its health benefits rather than its 

sensory properties (Harker et al., 2009). Cervellon and Dabe (2005) found similar results in their 

comparisons of food and flavor preferences between French and Chinese eaters. While both 

cultures have a strong emphasis on food, French preferences were almost entirely driven by 

affective reasoning, or in other words, they were driven mostly by “sensations, feelings, and 

emotions” (Cervellon & Dabe, 2005). The results for Chinese eaters indicated that preferences 

and food choices were based on a balancing of affective and cognitive reasons such as health 

benefits that reflected important Chinese cultural principles of equilibrium (Cervellon & Dabe, 

2005).  

 Altogether, there are a wide variety of factors that inform which foods and flavors are 

preferred. While these are surely relevant considerations for plant breeders and researchers, their 

implications on flavor evaluation methods remain unknown. Food preferences may be described 

as highly flexible, but plant breeders should consider that some of the determinants of preference 

are deeply rooted and sensitive topics. For example, when tomato cultivars are geared toward 

American preferences for firmness and sweetness, this is another way in which immigrants, 

refugees, and other marginalized groups are forced to assimilate. Meaningful plant breeding and 

efforts to evaluate flavor must take these factors into account as methods are introduced, 

improved, and discussed. 
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Conclusion 

 The quest to recover and maintain better flavor and sensory qualities in crops is 

undoubtedly a daunting task for breeders and researchers. While genetics play a role in laying the 

foundation for good flavor, the growing environment and cultural techniques have a big impact 

on their manifestation (Klee & Tieman, 2018). Human perception of flavor is fickle. As 

genetically unique individuals, everyone’s sensory machinery is different and constantly 

changing in response to the environment (Reed & Knaapila, 2010; Tesileanu et al., 2019). And 

still neither of these tells the full story. While sensory and plant scientists alike describe flavor as 

the “sum of [sensory] inputs that informs the brain what we are eating,” (Klee & Tieman, 2018) 

it is clearly more than that. Reflexively and unavoidably, everything tasted is put into the context 

of past experiences, expectations, histories, and identities. Flavor doesn’t just tell us what we’re 

eating, it reminds us about who we are and where we come from, too. 

 Yet somehow, in spite of all that makes studying flavor so complex, it has been assumed 

that the formal sensory science methods are the best. Certainly these traditional sensory methods 

have value and a continue place in flavor research, but the inability to mimic descriptive analyses 

with professionally trained panelist is often lamented by plant scientists. Attempts are made to 

proxy their methodologies with the use of expert breeders, while rapid sensory methods and 

alternatives that utilize professional end-users are automatically relegated as inferior. It seems 

unlikely that the approaches in traditional sensory evaluation are objectively better at coping 

with the realistic complexities of assessing flavor especially in non-industrial contexts where 

food also has extrinsic value (Piqueras-Fiszman & Spence, 2015). With sensory evaluation being 

the “child of industry” (Lawless & Heymann, 2010), their methodologies have not been 
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described, critiqued, and refined in the same way as other scientific disciplines. In fact, studies 

investigating the impact of training on reducing taster variability or its effect over time are 

practically absent in the literature (Lahne, 2016; Harker et al., 2009; Meiselman, 1993). 

Presumably some of this information exists, but it is outside the public domain and proprietarily 

owned by major food companies who use formal sensory science to guard market shares. 

Likewise, it can easily become problematic when one group of people (trained sensory panelists) 

is making decisions about what they think is best for others (all eaters), especially when the 

group in power doesn’t accurately reflect the people they are making decisions for. With these 

things considered, plant scientists should be wary of valorizing traditional methods, and room 

needs to be made for discourse that recognizes the historic shortcomings of applied flavor 

research. Instead, plant scientists must see the situation as an opportunity to go back to the 

drawing board and come up with new approaches that are better suited to non-industrial and 

agricultural contexts. This should be the future of plant science that works on improving flavor. 
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Chapter Two 

Assessing the Utility and Reliability of Rapid Sensory Evaluation Methods as Part of 

Organic Vegetable Variety Trials with the Seed to Kitchen Collaborative in Madison, 

Wisconsin 

 

Abstract 

 Agricultural researchers and plant breeders have become increasingly interested in flavor 

and its evaluation due to growing consumer demand for better flavor and sensory qualities in 

fruit, vegetable, and grain cultivars. This is especially true in the organic and local food sectors, 

which continue to grow in importance. Traditional sensory analysis techniques that utilize 

trained panelists are out of reach for most plant breeding and research programs. As alternatives, 

the Seed to Kitchen Collaborative employs rapid sensory methods and a participatory approach 

to flavor evaluation as part of their organic vegetable variety trials. The results from their 2019 

crew tastings were analyzed to assess their overall utility and reliability. A series of ANOVA 

tests for different flavor variables revealed many cases of significant differences between 

varieties across crops and market classes. The results helped in variety characterization and to 

identify both standout and poor performing varieties for sensory characteristics. Flavor variable 

correlations with taster overall preference were compared to ones established in the literature and 

showed very good agreement. The internal reliability of SKC’s crew tasting methods were 

assessed with repeated internal checks and analyzed with k-means clustering, which showed 29 

out of the 37 check pairs clustered together. These results may have implications to reconsider 

taste sample collection protocols. 

41



Background and Introduction 

 The Seed to Kitchen Collaborative (SKC) is a participatory research network based out of 

the Urban and Regional Food Systems Lab in the Horticulture Department at the University of 

Wisconsin – Madison. They use data generated from a diverse network of stakeholders including 

regional farmers and gardeners, local chefs, plant breeders, and seed companies to identify 

suitable vegetable varieties for organic farms in the Upper Midwest. The farmer participants in 

SKC are mostly small-scale, diversified, direct-market vegetable operations. They require 

vegetable varieties that grow and produce well on their organic farms and also possess the 

quality and flavor characteristics demanded by customers in their markets. While there is 

continued growth in demand for locally and organically produced food, buyers in these market 

sectors have higher expectations when it comes to eating quality (ex: flavor, texture, culinary 

attributes) (Yiridoe et al., 2005; Tropp, 2014; Organic Trade Association, 2019).  

 With flavor becoming more important for eaters and end-users (ex: chefs, bakers, 

brewers), sensory traits have become more relevant for growers and likewise for plant breeders 

and agricultural researchers (Dawson & Healy, 2018). Breeders and researchers are increasingly 

interested in the main drivers of consumer preference for example, but evaluating flavor is not 

necessarily a straight-forward process. Flavor is an inherently complex trait particularly when 

measured with human tasters (Klee and Tieman, 2018). For this reason, it has historically been 

considered sufficient for breeders to ensure cultivar flavor is acceptable, rather than selecting for 

improvement. Similarly, the traditional model of sensory analysis has made participation in 

flavor evaluation inaccessible for many relevant stakeholders like chefs and everyday eaters. 

 Formal sensory analysis traditionally uses an expert panel of highly trained judges to 

obtain precise measurements of flavor and its components (Lawless and Heymann, 2010). 
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Creating and maintaining a trained sensory panel is neither possible nor practical because of time 

and financial costs for the majority of crop researchers and breeders, especially those focused on 

small- and mid-scale, organic vegetable farmers (Dawson & Healy, 2018). Likewise, by relying 

on expert tasting panels, the eventual eaters and users of the vegetables are excluded from 

participating and giving their opinions (Varela & Ares, 2012). Considering the ultimate goal is to 

achieve better flavor in vegetables as perceived by the people buying them regularly, then it 

makes sense these stakeholders should be directly involved in the flavor evaluation process. In 

short, the traditional paradigm of flavor evaluation is not necessarily appropriate in plant 

breeding and agricultural research especially in local and organic market sectors. 

 The number of plant breeding and research programs interested in assessing flavor is 

growing, but development of appropriate methods is lagging. This interest reflects the rising 

economic and cultural attention to organic and locally produced food where good flavor is 

expected and prioritized (Tropp, 2014; Organic Trade Association, 2019). Many breeding 

programs currently rely on the flavor evaluation of one or two highly experienced breeders rather 

than a panel of highly trained tasters (P. Simon, personal communication, February 6, 2020). 

This seems an attempt to create analogous sensory evaluation procedures by replacing the expert 

tasting panel with breeder experts instead. It is true that longtime breeders will have likely tasted 

the full gambit of possible flavors within a crop, and they are presumably attuned to the needs of 

their regional stakeholders, so experienced breeders clearly have valuable contributions in the 

quest for better flavor in fruits and vegetables. Nevertheless, every individual has biologically 

imposed limitations as a taster, and this approach similarly ignores the eventual end-users and 

eaters (Varela & Ares, 2012). So, the question remains how plant breeders and agricultural 
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researchers can best assess flavor and use that information to make decisions and 

recommendations. 

 The need for inclusive, accessible, flexible, and faster sensory evaluation methods has not 

gone unnoticed. Dawson and Healy (2018) describe an array of rapid sensory evaluation methods 

and explain how they can be applied to plant breeding efforts aimed at improving flavor, 

however, they avoid prescriptive recommendations in favor of presenting a useful set of potential 

tools. Rapid sensory methods severely reduce or eliminate the need for a formal training process, 

while still providing qualitative and quantitative information (Frost et al., 2015; Dawson & 

Healy, 2018). They emerged as a response to the inherent problems and challenges posed by 

formal sensory analysis protocols. Overall, rapid sensory methods have shown to be consistent 

over time and reflective of conventional analyses with trained judges (Varela & Ares, 2012; 

Dawson & Healy, 2018). It is not necessarily the goal, however, for plant scientists to mimic the 

results of a trained expert panel even though this comparison is often used to defend the 

legitimacy of rapid sensory methods in the face of criticism that they are not rigorous enough. 

However, while trained experts may have calibrated abilities to detect particular aromas or 

specific components of flavor, they do not necessarily represent the flavor preferences, 

perceptions, nor culinary expectations of local chefs, bakers, and eaters (Varela & Ares, 2012; 

Frost et al., 2015). 

 This paper describes a more in-depth look at the rapid sensory evaluation methods used 

by SKC and examines their overall utility and reliability. The methods were used as part of 

SKC’s annual organic variety trials as well as a participatory tomato breeding project. They tap 

into a network of research station field workers and UW students. Overall, rapid sensory 

evaluation methods that use diverse groups of stakeholders to assess flavor in crops appear to be 
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viable alternatives to the standard approaches used by sensory scientists (trained panels) and 

plant breeders (single expert). But there may be considerations for altering sampling protocols 

based on k-means clustering that assessed the internal reliability of checks. These rapid sensory 

methods are capable of producing useful information about breeding populations, varieties and 

crops, and underscore the importance of engaging in local participatory networks. 

 

Methods and Materials 

 SKC has been working to develop appropriate participatory methods to evaluate flavor 

with a diverse group of stakeholders since 2013. Through that process, three general surveys 

have been developed: one for public tastings, one for crew tastings, and one for chef tastings. 

Since its beginning, SKC has used an iterative process to refine various aspects of the surveys 

including appropriate questions/traits, language and terms clarification, visualizations, and 

interface. For all 2019 tastings, paper ballots were made available, however, tasters were 

strongly encouraged to use the electronic version of the survey made with Qualtrics software, 

version 2019.6 (SAP, Provo, UT). A sample survey can be found in Appendix A.  

 This paper focuses on the methods and results from using SKC’s crew tasting survey 

during their 2019 trial season. Crew tastings were open to any interested participants, but mostly 

consisted of graduate students and field/lab workers that were employed at the research station. 

Participants were apprised of tastings and activities through a listserv at least 48 hours ahead of 

time. This type of network and communication is critical to the usefulness of data derived from 

crew tastings because assessors gain experience and familiarity with the process over time, and it 

allows for a more consistent group of tasters to help reduce variation introduced by differences in 
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taste perception. So, in addition to the logistical benefit of having most assessors centrally 

located, it can also diminish the error introduced by the effect of taster. Tapping into a network 

of interested plant scientists also helps achieve higher numbers of tasters, which is sometimes a 

point of contention when using untrained panelists (Lawless & Heymann, 2010; Dawson & 

Healy, 2018). 

 At the beginning of the season, available crew members went through a brief exploratory 

training exercise and a walkthrough of the survey to clarify terms and answer any questions. The 

activity (seen in Appendix B) involved tasting three different concentrations of sugar 

(sweetness), citric acid (sourness), cinchona bark (bitterness), table salt (saltiness), and Bragg’s 

liquid aminos (umami) in plain water and then again in tomato juice. The tomato juice exercise 

provides a more accurate reflection of the flavor complexity present in raw fruit and vegetables 

as well as the difficulties identifying which component is responsible for changes in perception. 

Crew members were tasked with recognizing the flavor component they were tasting and the 

concentrations for each (low, medium, or high). This can be quite difficult for some tasters, but 

there is clear growth in people’s perceptual abilities by the end. Traditional sensory 

methodologies use these trainings to qualify capable tasters (Lawless & Heymann, 2010), but 

SKC uses the activity as a learning exercise. For many who are new to the program, this is the 

first time they have thought about flavor as having separate and identifiable components. 

Attending the training was not a requirement to participate in tastings throughout the season, but 

the surveys did include a question asking whether or not the taster participated in the activity for 

2019. On average, there were eight tasters per tasting and five of those tasters had attended the 

pre-season training/learning activity. 
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Sample Collection 

 All tasting samples were grown as part of SKC’s organic variety trials at West Madison 

ARS (Verona, WI), although some winter squash samples were used from the SKC trials at 

Spooner ARS (Spooner, WI) due to disease pressure, high field mortality and storage difficulties 

at the Madison site. Horticultural methods followed what local farmers recommended for each 

individual crop. In 2019, nine different crop species were evaluated for flavor with multiple 

market classes and varieties for each (see summary table in Appendix C). Crew tastings typically 

occurred once to twice weekly throughout the growing season and once to twice monthly for fall 

storage crops (i.e. winter squash, carrots, potatoes). During the growing season, tastings were 

scheduled to coincide with harvest for the different crops, and usually happened the day after, so 

as to streamline field and flavor data collection. 

 Varieties were planted in at least two different field plots as part of an augmented design 

with multiple checks. Tasting samples were collected from every plot of the variety and bulked 

for presenting to tasters to minimize flavor differences attributable to field location. Samples 

were collected at maturity to mirror how they would be harvested and sold by direct-market 

farmers. For fruit and root crops, 3-4 whole samples were taken per plot while 1-2 whole plants 

were collected for lettuce. 

Constructing Tasting Sets 

 Tasting sets were limited to six or seven varieties, if possible, to avoid inducing palate 

fatigue and minimize the time commitment for assessors (Dawson & Healy, 2018). The smallest 

tasting sets had three samples, whereas the largest contained nine. In total, 52 different tasting 

sets were evaluated with the field crew surveys. To help give insight into the internal reliability 
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of SKC’s tasting methods, 37 of these tasting sets contained a repeated check within the samples. 

Varieties were grouped based on their market class and similarity in appearance. For example, 

red slicing tomatoes were tasted separately from pink slicing tomatoes, as were yellow and 

orange slicing tomatoes. The data can be analyzed and compared by tasting set, market class, or 

crop depending on the research goals. The grouping process was more difficult with the tomato 

breeding project due to the phenotypic variation still present in many families (F2 – F5 

generations). Tasting samples for breeding lines were prepared so that each sample corresponded 

to a single field plot of three plants.  

 In some cases, time and availability of participants necessitated preparing and presenting 

up to three different tasting sets at the same time. Tasters were asked to avoid giving partial 

answers and complete as many sets as their schedule allowed. 

Sample Preparation 

 After collecting from the field, samples were washed and prepped for tasting. The 

preparation process was somewhat crop-specific, but in general, vegetables were cut into bite-

size pieces that allowed for the best representation of the whole. As an example, tomatoes were 

sliced into wedges where each piece contained pericarp tissue as well as the internal gel and 

seeds. Additionally, one sample was left whole and displayed for tasters to consider in their 

appearance rating. All crops were tasted raw except potatoes and winter squash, which were 

steamed in countertop roasting ovens at 400°F. Perforated aluminum trays (4” x 6”) were filled 

with 1” cubes of potatoes or squash and placed on wire racks in preheated roasters (Hamilton 

Beach Mo. 32229) with 1” of water in the bottom. Samples were pierced with a fork to test for 

doneness after 30 minutes and removed once tender. Some varieties of squash took longer to 

cook than others (up to 40 minutes), but all potatoes were done after half an hour.  
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Crew Tasting 

 Once a tasting set had been 

put together, each variety was 

assigned a random three-letter code to 

disguise variety names. Experience 

with specific varieties as well as 

evocative language in cultivar names 

can induce bias for tasters (Wansink 

et al., 2005; Piqueras-Fiszman & 

Spence, 2015). Matching containers 

were labeled with the tasting code, 

filled with the corresponding sample, 

and placed alongside a whole, uncut 

sample for appearance ratings. This was done for each variety in the tasting set and displayed 

side-by-side on a table as seen in Figure 2.1.  

 Participants were asked to refrain from talking throughout the tasting process unless they 

had a question for the facilitator. This reduces bias caused by comments from other assessors and 

allows each person to focus on the task at hand. Tasters scanned a QR code with their smart 

phones or tablets that linked to the crew survey, which combined several different rapid sensory 

methods. For hedonic ratings of appearance, texture, and overall preference, a 1-5 scale was used 

where 1 corresponded to “poor” or “do not like” and 5 meant “excellent” or “extreme like.” 

Similarly, intensity scales from 1 (low) – 5 (high) were used to rate perceived sweetness, acidity, 

bitterness (harshness in carrots), and flavor intensity. For some crops (potatoes and tomatoes), 

Figure 2.1: A prepared tasting set of yellow potatoes. 
Potatoes in the containers are steamed and displayed 
alongside an uncut, whole sample. Not shown: fronts of 
containers are labeled with random 3-letter codes (ex: 
EIC, XKA, CYK). See Appendix A for sample survey. 
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tasters were also asked to rate umami (the “delicious” or “savory sensation” associated with 

products like meat, soy sauce, parmesan cheese, and mushrooms) (Marcus, 2005). Assessors 

were asked to rate each flavor trait - sweetness, acidity, bitterness (harshness), umami, and 

overall flavor intensity - objectively. In other words, they are asked “on a scale of 1-5 (1=low, 

5=high), how sweet is this variety?” This is different than asking for hedonic ratings (ie: “On a 

scale of 1-5, how much do you like the sweetness of this variety?”). 

  In the survey, tasters first provided a hedonic rating for each variety’s market 

appeal/appearance. Each variety was then tasted and rated one at a time. The survey was 

programmed to present varieties in a randomized sequence to reduce the effect of tasting order 

(Muir & Hunter, 1992). A hedonic rating for texture and objective ratings on the intensity scales 

for each variety made up the bulk of the survey. Following the intensity scales, a type of open-

ended evaluation allowed tasters to give qualitative feedback such as any unique or novel 

attributes they perceived about the variety (Frost et al., 2015; Drake & Civille, 2006).  

 At the end of the survey, assessors were asked to taste all the varieties again and give an 

overall hedonic preference score for each one. To palate cleanse between varieties or between 

tasting sets, plain crackers and filtered, room temperature water were provided.  

Statistical Methodology 

 Statistical analysis was performed using a combination of Microsoft Excel (2016), R 

(3.1.0), and RStudio (1.2.5033). Data was analyzed at various levels of grouping (ie: tasting set, 

market class, breeding lines only, etc.). Notably, there is not an inherently correct way to group 

varieties for analysis. Researchers should consider what questions they are interested in asking 

and use those as a guide. 

50



Mixed-Model ANOVA 

 The following mixed-effects model was used to evaluate the effect of variety on each 

survey response variable (appearance, sweetness, acidity, etc.): 

𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 =  𝜇𝜇 +  𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖  +  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑗𝑗  + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑙𝑙  +  𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 

The lmer function in the lme4 R package (Bates et al., 2015) was used for the analysis with taster 

and date as random effects and variety as fixed. Additionally, the R packages lmerTest 

(Kuznetsova et al., 2017) and emmeans (Lenth, 2020) were used to approximate the degrees of 

freedom for formal F-tests via Satterthwaite’s method (lmerTest) and perform post-hoc analysis 

with Tukey’s HSD using estimated marginal means (emmeans). Estimated marginal means are 

equivalent to least squares means but are applied to unbalanced designs, which occurs when the 

number of tasters changes between tasting events or a taster mistakenly leaves a question blank 

(Kuzetsova et al., 2017). For some crops (ex: squash and potatoes), varieties within a market 

class are tasted on the same day. For others, like tomatoes, logistical reasons like fruit maturity 

necessitate tasting varieties over a period of a few weeks. For every date, each assessor tastes 

each variety, but not every variety nor every assessor is present on each date. So, the assumption 

is made that no variety by date, variety by taster, nor variety by date by taster interactions exist. 

While this may not be ideal from a statistical standpoint, it makes tasting all varieties and all 

crops logistically possible. This method is equivalent to treating tasters as replicates and date as a 

blocking factor in an incomplete block design.  

Correlation Matrices 

 To examine the main drivers of taster’s overall preference, correlation matrices were 

created in R’s basic stat package. Correlation coefficients and their significance levels were 
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examined for both the raw data and variety means, although only correlations using variety 

means will be presented and discussed.  

k-means Clustering 

 The k-means clustering algorithm was used in R to evaluate if repeated checks within 

tasting sets grouped together. Each crop was analyzed individually with all market classes 

combined and all variables considered. As a multivariate technique with testable hypotheses, k-

means clustering offers a more desirable alternative to univariate pairwise t-tests. This is 

especially true when varieties are similar to each other, and there is no particular standout in the 

set (Simon et al., 1980; Varming et al., 2004). However, as an iterative process that begins with a 

random draw, it can be difficult to produce repeatable results; this was mitigated with other 

functions and attention to certain arguments in R’s kmeans function such as increasing the 

number of iterations and setting the initial seed (Everitt & Hothorn, 2011). 

 First, the ideal number of clusters was determined by plotting the within group sum of 

squares as cluster number increased (see Appendix G). R’s built-in kmeans function was then 

applied to a data frame of variety means, which assigned each variety to a cluster. Finally, the 

cluster package (Maechler et al., 2019) was used to project the final groupings on a graph with 

axes representing the first two principal components. 

Results 

 Mixed-Model ANOVA 

 The series of F-tests indicated that variety had a significant effect on many of the 

variables impacting flavor in most of SKC’s trials. These results are summarized in Table 2.1A, 

which shows the p-values for F-tests across all market classes and crops in 2019. P-values less 
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than 0.10 were considered significant and warranted further analysis with Tukey’s HSD using 

emmeans. The pairwise comparisons are summarized in Table 2.1B, which shows the number of 

significance groupings after this follow-up analysis.  

 

 

 

Table 2.1A: This table shows the p-values for each F-test of variety's fixed-effect on each 
response variable across all crops and market classes in SKC's 2019 trials. P-values <0.10 were 
considered significant and warranted further analysis using Tukey's HSD with estimated 
marginal means. *In carrots, the term harshness was used instead of bitterness since it better 
describes the chemical compounds present. NA: Trait not evaluated for that crop. 
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Table 2.1B: Where the effect of variety was significant (p<0.10) as indicated by the ANOVA, 
pairwise comparisons were made using emmeans. This table shows the number of significance 
groupings in the compact letter display that resulted from this follow-up analysis. * In carrots, 
the term harshness was used instead of bitterness since it better describes the chemical 
compounds present. NA: Trait not evaluated for that crop. NS: ANOVA results were not 
significant. ND: No differences were detected despite a significant result from the F-test; this 
occurs because of a lack of statistical power in the pairwise comparisons.    

  

 One example of the F-tests looking at the fixed effect of variety on each of the flavor 

characteristics from mini butternut squash can be seen in Table 2.2. A full set of these detailed 
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ANOVA tables are in Appendix D.  For all except acidity (F=1.4, p=0.22), variety had a 

significant effect on the trait in question. Looking at taster overall preference, the F-test (F=5.7, 

p<0.001) suggests statistical differences between varieties in the trial. Table 2.3A shows the 

follow-up analysis comparing each variety to the others. It indicates the variety ‘Butterscotch’ 

was more preferred than all the others except ‘Brulée.’ Table 2.3B similarly shows the 

significance grouping for mini butternut squash varieties when looking at perceived sweetness 

(F=10, p<0.001). In this case, ‘Butterscotch’ is in a group by itself with an average sweetness 

rating of 4.3.  

 

Table 2.2: ANOVA Table using Satterthwaite's method: Mini Butternut Squash 

Characteristic SS MS F Pr(>F) 
Appearance 19 3.2 5.0 <0.001 
Texture 44 7.3 9.3 <0.001 
Sweetness 46 7.6 10 <0.001 
Acidity 3.6 0.60 1.4 0.22 
Bitterness 5.8 1.0 2.2 0.055 
Intensity 37 6.1 13 <0.001 
Overall preference 29 4.8 5.7 <0.001 

Table 2.2:  Results from F-tests examining the fixed effect of mini butternut squash variety on 
each flavor component. P-values less than 0.10 were considered significant. 

 

Table 2.3A: Significance Groupings: Mini Butternut Squash - Overall Preference 

Variety emmean SE lowerCI upperCI group 
Butterscotch 4.1 0.27 3.5 4.6 a 1      
Brulee 3.7 0.27 3.2 4.2 a b   
Honeynut 3.1 0.27 2.5 3.6      b c 
Hamilton 3.1 0.27 2.5 3.6      b c 
Butterbaby1 2.8 0.27 2.3 3.4      b c 
Butterbaby2 2.6 0.27 2.1 3.1         c 
AutumnFrost 2.3 0.27 1.8 2.8         c 
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Table 2.3B: Significance Groupings: Mini Butternut Squash - Sweetness 

Variety emmean SE lowerCI upperCI group 
Butterscotch 4.3 0.27 3.7 4.8 a   1    
Brulee 2.8 0.27 2.2 3.3 b 
Butterbaby2 2.8 0.27 2.2 3.3 b 
Butterbaby1 2.7 0.27 2.2 3.2 b 
Honeynut 2.4 0.27 1.8 2.9 b 
Hamilton 2.1 0.27 1.6 2.7 b 
AutumnFrost 2.1 0.27 1.6 2.7 b 

Table 2.3: Significance groupings of mini butternut squash varieties for taster overall preference 
(A) and perceived sweetness (B). Varieties that do not share a letter in the “group” column are 
considered statistically different from each other. 

 

 A complete and detailed set of tables showing significance groupings for flavor traits 

across all crops and market classes is located in Appendix E. Like in the mini butternut case, 

ANOVA and follow-up pairwise comparisons sometimes revealed exceptional varieties in regard 

to flavor qualities, but they also helped identify varieties that may be sub-par for certain traits as 

well. Such a case can be seen with pink slicing tomatoes grown in SKC’s high tunnel trial. The 

results from the ANOVA tests of significance are presented in Table 2.4A. Umami is highly 

desired by chefs when it comes to tomato flavor, and Table 2.4A shows there are statistical 

differences between varieties for umami (F=5.2, p=0.0020). The significance groupings shown in 

2.4B reveal ‘Chef’s Choice Pink’ was rated significantly lower (mean=1.7) for perceived umami 

than all other varieties. 
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Table 2.4A: ANOVA Table using Satterthwaite's method: Pink Tomatoes 
(High Tunnel) 

Characteristic SS MS F Pr(>F) 
Appearance 3.3 0.83 1.3 0.30 
Texture 13 3.3 4.2 0.0064 
Sweetness 3.8 0.95 0.91 0.47 
Acidity 7.9 2.0 2.7 0.045 
Bitterness 36 9.1 20 <0.001 
Umami 14 3.5 5.2 0.0020 
Intensity 12 2.9 4.0 0.0086 
Overall preference 12 3.1 3.5 0.017 

 

Table 2.4B: Significance Groupings: Pink Tomatoes (High Tunnel) - Umami 

Variety emmean SE lowerCI upperCI group 
MarthaWashington2 3.1 0.27 2.6 3.6 a    1    
2401 3.1 0.27 2.6 3.6 a    1    
BWHybrid 3.0 0.27 2.5 3.5 a    1    
MarthaWashington1 2.7 0.27 2.2 3.2 a    1    
ChefsChoicePink 1.7 0.27 1.2 2.2 b 
-   Upper and lower limits for 95% confidence interval 
-    Significance level for differences (alpha) = 0.10 

Table 2.4: Results from series of F-tests assessing fixed effect of pink tomato variety on each 
flavor characteristic for SKC’s high tunnel trial (A). Significance groupings for pink tomato 
varieties grown in the high tunnel for umami (B). Varieties that do not share a letter in the 
“group” column are considered statistically different from one another. 

 

Correlations 

 Correlation matrices were created to evaluate significant relationships between variables 

within crops and market classes, but the main interest was examining significant correlations 

with tasters’ overall preference. Table 2.5A summarizes the results for each crop as a whole, 

while Table 2.5B looks at correlations by market class, and Appendix F contains complete 
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correlation matrices for individual tasting sets, market classes and crop species. The correlation 

between overall preference and flavor intensity was significant across all crops, while texture and 

sweetness were significant for all crops except one (sweet peppers and potatoes respectively). In 

some cases (bolded in Table 2.5), significant correlations between overall preference and a flavor 

variable were detected despite F-tests not indicating differences between varieties for neither 

overall preference nor the correlated variable. Table 2.5B is helpful for comparing market classes 

and/or sets of varieties. For example, red tomatoes grown in SKC’s high tunnel trial only show 

significant correlations with taster preference for texture (r=0.46) and umami (r=0.73). But the 

results from tastings with the tomato breeding lines indicate significant correlations between 

taster preference and appearance (r=0.52), texture (r=0.63), sweetness (r=0.73), acidity (r=0.43), 

umami (r=0.57) and flavor intensity (r=0.81). 

 

Table 2.5A: Significant Correlations with Taster Overall Preference for All 
Crops in 2019 SKC Organic Variety Trials 

  Appearance Texture Sweetness Acidity Bitterness^ Umami Intensity 
Butternut 
Squash 0.57*** 0.75*** 0.77*** NS -0.52*** NA 0.73*** 

Carrots 0.30*** 0.72*** 0.75*** NS -0.52*** NA 0.56*** 

Cucumbers 0.54*** 0.68*** 0.55*** NS NS NA 0.36*** 

Lettuce NS 0.64*** 0.71*** -0.29* -0.75*** NA 0.53*** 
maxima 
Squash 0.62*** 0.83*** 0.92*** NS NS NA 0.90*** 

Melons NS 0.80*** 0.92*** NS NS NA 0.94*** 
Sweet 
Peppers NS NS 0.56*** NS NS NA 0.67*** 

Potatoes NS 0.73*** NS NS NS 0.72*** 0.70*** 

Tomatoes 0.44*** 0.68*** 0.70*** 0.30*** NS 0.45*** 0.74*** 
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Table 2.5B: Significant Correlations with Taster Overall Preference across Market Classes 
in 2019 SKC Organic Variety Trials 

  Appearance Texture Sweetness Acidity Bitterness^ Umami Intensity 
Mini Butternut 
Squash 0.80** 0.92*** 0.75* NS NS NA 0.78** 
Large Butternut 
Squash NS NS 0.94*** NS NS NA 0.68* 

Purple Carrots NS 0.84*** 0.63** NS -0.67** NA 0.59** 
Red Carrots NS 0.76*** 0.82*** NS -0.64*** NA 0.58** 
Orange Carrots NS 0.68*** 0.74*** NS NS NA 0.64*** 
Asian Cucumbers 0.69* NS NS NS -0.85 NA NS 
Mini Cucumbers NS NS 0.81* NS NS NA NS 
Pickling Cucumbers NS 0.73*** NS NS NS NA 0.59** 
Butterhead Lettuce NS NS 0.85** NS NS NA 0.76** 
Little Gem Lettuce NS NS NS -0.97*** NS NA NS 
Green One-Cut 
Lettuce NS NS NS NS NS NA NS 

Red One-Cut Lettuce NS NS NS NS NS NA NS 
Blue Green 
maxima Squash NS 0.80* 0.93*** NS NS NA 0.93*** 

Red Pink maxima 
Squash NS 0.84** 0.93*** NS NS NA 0.92*** 

Orange-Fleshed 
Melons NS 0.80*** 0.93*** NS NS NA 0.94*** 

Red Bell Peppers NS NS NS -0.62** NS NA NS 
Yellow Orange Bell 
Peppers NS NS 0.81* NS NS NA 0.96*** 

Red Corno di Toro 
Peppers NS NS NS NS NS NA NS 

Orange Yellow Corno 
di Toro Peppers NS NS NS NS -0.93** NA NS 

Red Potatoes NS NS NS NS NS NS 0.77* 
Yellow Potatoes NS NS NS NS -0.81* NS 0.91* 
Cocktail Tomatoes NS NS NS NS NS NS 0.91** 
Orange Yellow 
Tomatoes (Field) NS 0.89** NS NS NS NS 0.78* 

Red Tomatoes (Field) NS 0.46* NS NS NS 0.53* NS 
Pink Tomatoes 
(High Tunnel) NS NS NS 0.86* NS NS NS 

Red Tomatoes (High 
Tunnel) NS 0.65** NS NS NS 0.73** NS 

Breeding Tomatoes 0.52*** 0.63*** 0.73*** 0.43** NS 0.57*** 0.81*** 
Table 2.5 Summaries of significant correlations with taster overall preference. (A) Shows 
correlations for crop species. Correlation coefficients are bolded to show cases where the F-test 
did not indicate differences between varieties for overall preference, the flavor variable 
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correlated with preference, or both. (B) separates crops into their different market classes. *** p 
< 0.01, ** p < 0.05, * p< 0.10 Tasting sets did not have enough entries to calculate correlations 
using variety means for Galia melons, multi-colored potatoes, cherry tomatoes, and pink field-
grown tomatoes. ^In carrots, harshness was used instead of bitterness. NA: Trait not evaluated 
for this crop. NS: Correlation was not significant at the 0.10 level.  
 

k-Means Clustering 

 To examine the internal reliability of SKC’s flavor methods, k-means clustering was 

applied to each crop species to see whether the internal variety checks clustered together. If the 

methods are reliable, then the repeated check variety should always appear in the same cluster as 

its counterpart. Out of a total 37 internal checks, 29 pairs (78%) clustered together. The results 

are summarized in Table 2.6, which lists the variety used as a check, the total number of clusters 

(k) for the crop, and whether both entries of the check variety ended up clustered together. 
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Table 2.6: A summary of k-means clustering analysis to assess the internal reliability of SKC's 
rapid flavor evaluation methods. The algorithm was applied to each crop as a whole and looked 
across all variables. This table shows the repeated variety checks used throughout the 2019 
season as well as the total number of clusters and whether the check variety clustered together. 

  

 As an example, the k-means clusters for butternut squash are presented in Figure 2.2. In 

total, there were two internal checks throughout all the 2019 butternut squash tastings 
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(‘Waltham’ and ‘Butterbaby’). Notably, the internal checks are denoted with a 1 and 2 following 

the variety name. For example, in Figure 2.2, ‘Butterbaby1’ and ‘Butterbaby2’ in cluster #2 

represent an internal check as do ‘Waltham1’ and ‘Waltham2.’ A complete set of k-means 

clustering figures can be found in Appendix G along with plots used to determine appropriate 

number of clusters. 

 

Figure 2.2 k-Means clustering of butternut squash tasted in SKC's 2019 trials. 
 

 Figure 2.3 shows the k-means groupings for C. maxima squash where the ‘Orange 

Summer’ check pairing grown in Spooner did not cluster together. The other check pairs that did 

not end up clustered together in the final analysis include carrots (‘Atomic Red’), lettuce 

(‘Newham’), sweet peppers (‘Flavorburst,’ ‘Beachcraft,’ ‘Karma,’ and ‘Carmen’), and melons 

(‘Divergent’) grown at the west Madison site. These k-means plots can be found in Appendix G. 
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Figure 2.3 k-means clustering for C. maxima squash where the internal check variety 
‘OrangeSummerSP’ did not cluster together. Carrots, lettuce, and melons additionally all had one 
check pair that did not group together, while sweet peppers had four (see Appendix G). 

 

 

Additionally, as a way to make potential breeding decisions and compare experimental varieties 

to others, breeding lines for SKC’s tomatoes and the Carrot Improvement for Organic 

Agriculture Project (CIOA) were clustered alongside commercially available cultivars using k-

means. Figure 2.4 shows an example of orange carrots. 
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Figure 2.4 k-means clustering for orange carrots comparing breeding lines from the CIOA 
project with commercially available cultivars. 
 

Discussion 

 The rapid sensory methods utilized by SKC are more accessible for crop researchers than 

traditional approaches, and they offer flexibility when it comes to analysis. Depending on the 

scope or context of the study, different analytic methods can be applied to the same data. For this 

reason, it is neither informative nor practical to provide an exhaustive discussion of all crop 

flavor data from SKC’s 2019 trials. (A complete set of visuals and tables for crops and market 

classes can be found in Appendices D - G). Presented here are only some of the ways to analyze 

and interpret data from participatory rapid sensory evaluations as well as a few examples that 

highlight the utility and reliability of these methods. As sensory exploration in the plant science 

field continues to grow, surely so too will the insights into decision-making based on this type of 

flavor data. 
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Identifying Specific Varieties for Flavor-Related Components 

 In some research contexts, it may be desirable to answer simple questions about a 

specific group of varieties. One of SKC’s goals is to provide relevant information to Upper 

Midwest organic growers to aid in their variety selection. Importantly, the communication 

between SKC and their grower-partners is bidirectional. In other words, local growers play a big 

role in choosing which varieties should be entered in the trials in the first place. With increasing 

consumer attention toward eating and culinary qualities, growers want to know if any of these 

specific varieties are more preferred for their flavor than others. This is especially true in the 

SKC foci of the organic and local food market sectors (Yiridoe et al., 2005; Tropp, 2014).  

 Mini butternut squash is a relatively new market class; the smaller size has made them 

quite popular in restaurants as well as for farmers markets and CSAs. Its rise is partly attributed 

to the success of the variety ‘Honeynut,’ a mini butternut released specifically for flavor and 

eating quality as a collaboration between chef Dan Barber at Blue Hill Stone Barns and breeder 

Michael Mazourek at Cornell (Hultengren et al., 2016).  In 2016, one survey showed 90% of 

squash growers in the Northeast were growing at least one variety of mini butternut, mostly 

‘Honeynut’ (Hultengren et al., 2016). The interest has also spread to the Midwest, where many 

of SKC’s grower-partners cultivate mini butternut types and have a vested interest in finding 

varieties with superior eating quality for their customers.  

 The results show that ‘Butterscotch’ is more preferred than all the other trial varieties 

except ‘Brulee’ (Table 2.3A) and was perceived as significantly sweeter than the others too 

(Table 2.3B). Depending on how ‘Butterscotch’ performs in the field (i.e. yield, disease 

resistance, etc.) this type of information can be very useful to a farmer’s decision-making when 

planning their season. In this case, ‘Butterscotch’ is lower yielding and therefore may be a good 
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recommendation for gardeners or farmers catering to chefs, while ‘Brulée’ has better field 

performance and is likely a more appropriate choice for the average farmer. While superior 

sweetness might not be as impactful as overall preference for farmers making choices about 

which varieties to grow, it is still useful information for marketing and variety characterization. 

Direct-consumer sales typically involve face-to-face interactions where sellers (i.e. growers) can 

emphasize unique characteristics about their produce to buyers (i.e. professional end-users and 

eaters) (USDA, 2016; Fernquist & Ekelund, 2014). Hypothetically for example, a market farmer 

may win over a parent by highlighting that ‘Butterscotch’ tastes sweeter than other varieties, and 

therefore requires less added sugar to get the kids to eat it. 

 Similarly, restaurants and chefs are becoming increasingly important parts of the food 

system. Chefs can offer large and stable contracts or accounts for growing specific crops and 

varieties, which are often critical to growers’ revenue streams (Polling et al., 2017). Likewise, 

until the COVID-19 pandemic, prevalence of going out to eat at restaurants had been rising since 

the 1970s, so chefs are increasingly the ones preparing and putting food on people’s plates 

(Guthrie et al., 2013; Tropp, 2014). Even with restaurant restrictions due to COVID-19, chefs 

continue to be important leaders in food culture on social media and television. With this in 

mind, it is reasonable to also consider potential interests of chefs when it comes to local food and 

flavor research. A chef may be interested in contracting with a farmer to grow an early crop of 

pink tomatoes high in umami for a particular culinary application. The groupings shown in Table 

2.4B illustrate a different scenario than with the butternut squash. In this case, it seems as though 

‘Chef’s Choice Pink’ would be a variety to avoid, but there are several other potential options. 

The chef and farmer can then use data on other traits like yield, earliness, or disease resistance to 

come to a decision that best works for them. 
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Determinants of Preference 

 While classical sensory analysis with trained panelists is outside the realm of feasibility 

for most crop researchers, food scientists have often paired their descriptive panel work with 

consumer preference tests (Varming et al., 2004; Lawless & Heymann, 2010; Oltman et al., 

2014). This is lucky since a trove of information exists on different flavor variables and their 

relationship to people’s preference. The correlations established in the literature can be compared 

to the ones found with SKC’s rapid evaluation methods. With that being said there are a few 

potential caveats. First, most consumer preference studies have focused on grocery store 

shoppers rather than local food consumers. It has already been mentioned that local food 

consumers have higher overall expectations when it comes to flavor and eating quality, so there 

may be differences in drivers of preference for this subset of local food consumers compared to 

the broader population (Tropp, 2014; Organic Trade Association, 2019).  

 Second, the ability to detect significant correlations depends somewhat on the differences 

among the varieties in question. The variability between cultivars for particular traits (ex: acidity 

or bitterness) may not be as large as it would be in a more diverse breeding population, or 

alternatively it may be so large that it obscures other relevant correlations. An example was 

mentioned in the results from Table 2.5B by comparing the 2019 correlations for SKC’s high 

tunnel red slicing tomato trial versus their breeding program. Neither sweetness, acidity, nor 

flavor intensity were significantly correlated with overall preference for the varieties in SKC’s 

red slicer trial, which contained five F1 hybrids and two heirloom varieties. However, when 

looking at a much more diverse group of tomatoes (breeding lines in the F2-F5 generations), 

appearance, sweetness, acidity, and flavor intensity all had significant relationships with taster 

preference. In the literature, the relationship between sweetness and overall preference in 
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tomatoes is well established, so its absence in the SKC high tunnel red slicer trial is likely a 

reflection of the varieties being similar for some traits and not for others (Klee et al., 2018; 

Oltman et al., 2014). 

  Overall, the correlations found using SKC’s methods align strongly with the existing 

literature across all crops. This agreement is encouraging for situating these rapid sensory 

methods in the greater context of sensory and flavor science. Continuing with tomatoes as an 

example, many variables have found to be significantly correlated with overall preference, the 

strongest of which is flavor intensity (Klee et al., 2018; Baldwin et al., 1998; Aurand et al., 

2012). Sweetness, texture, and appearance have all shown to have significant relationship with 

eater preference too (Oltman et al., 2014; Baldwin et al., 1998; Aurand et al., 2012). Figure 2.5A 

shows significant correlations for the combined data of all SKC’s 2019 tomato tastings including 

their breeding material. The strongest relationship appears to be intensity, followed closely by 

sweetness and texture. The SKC results also show significant correlations with acidity and 

umami. The relationship between these two variables and tomato preference are not as 

ubiquitous in the literature, but they do exist, and chefs have articulated that umami is critical to 

good tomato flavor and very desirable in the kitchen (Oruna-Concha et al., 2007; Marcus, 2005). 

 The alignment between correlations found with SKC’s rapid sensory methods and in the 

literature does not stop with tomatoes. In their review, Corrigan et al. (2006) found the main 

drivers of consumer preference in Curcurbita maxima squash to be sweetness, flavor intensity, 

and texture. Table 2.5A shows the correlations between flavor components and preference for all 

C. maxima squash in the SKC crew tastings, which match the literature. This suggests SKC’s 

methods are able to hone in on the same established correlations, and perhaps even find new 

drivers of preference like appearance (see Table 2.5A) 
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 In carrots, the literature says preference correlates most strongly with perceived 

sweetness but is also related to texture, flavor intensity, and decreasing harshness (Varming et 

al., 2004; Simon et al., 1980). Once again, SKC’s combined carrot tasting results (Table 2.5A) 

reflect the established literature quite accurately. Taken together, it appears SKC’s methods are 

robust enough to reach similar conclusions as formal sensory approaches when it comes to 

correlating flavor variables with preference, and they have additional potential utility, too. 

 The construction of correlation matrices (seen in Appendix F) can be both insightful and 

useful. For example, once the main determinants of preference are determined for a crop, a 

researcher could construct a new survey to evaluate only those variables. When it comes to 

public events with lots of distractions and people, SKC has learned a shorter and more 

straightforward survey tends to create a better experience for tasters and provides more complete 

data for researchers. Correlation matrices for sensory data can also be helpful if there is a desire 

to do follow-up experiments with other rapid-type methods. For example, they can help create 

axes for use in projective mapping, an exercise in which assessors place samples in a sensory 

space based on perceived similarities and differences; this is especially suitable for use with 

expert end-users like chefs and bakers (Dawson & Healy, 2018; Frost, 2015). 

 Correlation matrices can also inspire new research questions or areas for further 

exploration. One curious pattern that arose in SKC’s 2019 trials is a significant correlation 

between sweetness and texture across multiple crops (seen in Appendix F: tomatoes, lettuce, 

butternut and C. maxima squash, melons, cucumbers, and carrots). The explanation behind the 

relationship between sweetness and texture is intriguing. Perhaps the underlying cell or tissue 

organization plays a role in releasing sugars once a vegetable or fruit is chewed. Or maybe these 

traits are correlated because some breeders are actively selecting for flavor and understand the 
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importance of both, so sweeter varieties also tend to have better texture. Further research to 

understand the relationship between these two traits might enhance breeding efforts aimed at 

improving sensory qualities. 

 Likewise, another interesting consideration is whether or not the main drivers of 

preference change depending on the market class. Lettuce offers a striking example. In 2019, 

SKC trialed three market classes of lettuce: butterheads, little gems, and one-cut types. The 

literature around consumer preferences in lettuce is somewhat sparse, but a positive correlation 

with sweetness and a negative correlation with bitterness have been recognized (Chadwick et al., 

2016). The results for lettuce in Table 2.5A show similarly important drivers of preference. 

Figure 2.5B adds more nuance, however, as correlations with preference change when looking at 

the different lettuce market types. Preference in little gem types show an extremely close 

negative relationship with acidity while butterhead lettuce shows a positive correlation with 

sweetness and flavor intensity. Additionally, no significant correlations were found when 

looking at red and green one-cut types individually. 

 Granted, the point made earlier about the nature of differences between varieties in the 

trial must be considered. It is reasonable to suspect that with a different set of varieties there 

might be a greater consensus across market classes. However, a similar pattern can be seen in 

different carrot (i.e. red, purple, and orange) and tomato (red, pink, and orange/yellow) market 

classes where the main drivers of preference change in rank for different colors (see Table 2.5B 

and Appendix F). A single gene change underlying the change from red to pink tomatoes has 

shown to have a significant effect on 122 other fruit metabolites, some of which are involved in 

flavor (Zhu et al., 2018). When taken alongside the inferences from SKC’s variety trials, there 

may be reason for researchers to look more in-depth at differences in preference and flavor 
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across market classes as well as potential genetic links between sensory qualities and market 

class to aid future breeding work. 

Multi-Trait Comparisons of Varieties 

 To further situate SKC’s sensory evaluation methods among others, the internal 

reliability was assessed by applying k-means clustering to each crop to assess how check 

varieties grouped. Overall, k-means analysis indicated the internal reliability of SKC’s methods 

was decent. However, Figure 2.3 shows one of the eight cases in which the internal checks did 

not cluster together. 

 In considering why these checks did not group together, sample collection may have 

played a role. In the case of ‘Newham’ lettuce, ‘Carmen’ corno di toro pepper, ‘Divergent’ 

melon, and ‘Beachcraft’ and ‘Flavorburst’ bell peppers, all of these varieties were used as field 

checks or fillers meaning they appeared more times in the trial than other varieties. Since sample 

collection dictates incorporating material from every field plot of the variety, varieties used as 

fillers and field checks end up with more heterogenous tasting samples. With a more varied 

sample, there is increased likelihood these checks would not group together especially with each 

taster only eating one or two pieces of each sample. The ‘Orange Summer’ squash is less easy to 

explain, but the Spooner site (zone 4a) is a challenging place to fully ripen squash, and SKC 

unfortunately lacks access to appropriate squash storage facilities. Both of these may have been 

relevant factors. For ‘Atomic Red’ carrots and ‘Karma’ corno di toro peppers, the explanation 

behind separately grouped checks is also not clear. One consideration might be both these 

varieties are open-pollinated, so while relatively uniform in appearance, there may still be some 

variability in the genes underlying flavor. While they adjust to try and improve their method’s 

internal reliability, in the meantime k-means clustering can serve as a tool to inform SKC of how 
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much weight their flavor evaluation carries on a case-by-case basis. In other words, if k-means 

clustering reveals an internal check did not group together, then SKC can choose to take those 

results with a proverbial grain of salt. 

 K-means clustering can also be useful for comparing breeding lines or varieties soon-to-

be-released with cultivars already commercially available. This is especially useful when one 

cultivar gains in popularity or notoriety such as the ‘Honeynut’ squash or ‘Bolero’ carrots, which 

Varming et al. (2004) found to be “exceptional” in terms of flavor. These varieties can act as a 

sort of benchmark for good flavor and eating quality. In Figure 2.4, ‘Bolero1’ and ‘Bolero2’ 

appear together along with several breeding lines from the Carrot Improvement for Organic 

Agriculture (CIOA) project. Notably, flavor is being considered and selected for as part of this 

project, so it is encouraging these CIOA lines group together alongside ‘Bolero’ for the flavor 

data since it has become a standard both for eating qualities and organic growing. Additionally, 

the other commercially available varieties in the trial (‘Adana,’ ‘Dolciva,’ ‘Napoli,’ and 

‘Negovia’) group separately, showing they are more similar to each other and significantly 

different than ‘Bolero’ and the CIOA lines in the other cluster. This is good evidence the 

breeders are making gains in their selection for better flavor.  

 It is perhaps obvious, however, that breeding and growing choices cannot be based on 

flavor and eating quality alone. Realistically, varieties must yield enough such that both farmer 

livelihoods and food prices for consumers can be optimized. This is especially true in an era 

marked by expanding populations and increasing climatic chaos. But breeding for flavor 

(especially traits like increased sugars) often has a negative tradeoff with yield (Klee & Tieman, 

2018). Nonetheless the growing interest in better eating qualities of fruit, vegetables, and grains 

is not likely to wane. Finding ways to overlay flavor data along with other traits (ex: disease 
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resistance, yield, earliness) using k-means clustering or other multivariate techniques would 

greatly enhance breeding efforts in the future. 

 

Conclusions 

 It is clear that rapid sensory methods have scientifically valid and practically feasible 

applications for plant breeders and researchers interested in evaluating flavor. In the case of SKC 

and its crew survey tool, the network of plant breeders, researchers, field station workers, and 

students has proven extremely valuable in this type of evaluation. From a scientific perspective, 

the crew tasters have a unique and important role in the flavor evaluation process. When 

questions come up or concerning trends are noticed in the data (ex: tasters are giving hedonic 

ratings on intensity scales), these can be mitigated relatively easily through listserv 

communication and reminders from the tasting facilitator. Similarly, many crew tasting members 

participate for multiple years. Through continued participation, their sensory description and 

detection abilities likely improve. There is also great disappointment when efforts are put into 

preparing for a tasting and no (or few participants) show up, and the crew network provides 

some safeguards to having a reasonable number of participants to make sure labor tradeoffs are 

worth it. This type of organization has also allowed for numerous other plant breeders and 

graduate students to access SKC’s network and incorporate sensory components into their 

projects. 

 This analysis has showed how these rapid sensory methods can be used to produce 

beneficial information about specific varieties for characterization, local marketing, and 

enlightening grower decisions. Likewise, they can be used to investigate questions about crops as 
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a whole. Potential applications in breeding such as comparing lines to commercially available or 

standout cultivars have also been discussed alongside possibly relevant questions for further 

investigation. So, in addition to being more accessible and practical, these rapid sensory methods 

are flexible in the types of ways crop researchers can use them for their advantage. It is only the 

beginning of this new context for flavor analysis in agricultural research. As these alternative 

methods to traditional sensory science become more accepted in plant sciences and beyond, their 

applications will almost surely expand. 

 Finally, it must be acknowledged that chasing the results of formal sensory scientists is 

problematic and cannot be the goal for plant scientists. Some of these reasons, such as the 

exclusion of everyday eaters, have already been discussed, and the origins of traditional sensory 

science should not be ignored either. Operating as if a specific group of people (i.e. 

professionally trained tasters, most of whom were initially white, well-educated men) are better 

suited to decide what people should eat concentrates power into the hands of a few. This is both 

scientifically and socially dangerous. 

   Perhaps Patterson and Aftel (2017) say is best: “what exactly people think defines good 

food...isn’t easy to tease out, because it’s always been bound up in broader cultural notions about 

what is familiar and what is exotic, what is healthful or harmful, what goes together and what 

doesn’t.” As part of a resilient and robust food system, diversity is considered imperative. True, 

diversity in crops is important, especially when it comes to flavor. Yet, it is must also be realized 

that the diversity of our crops reflects the diversity of the people involved in their stewarding 

along the way.  
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Chapter Three 

Networks: A necessary tool for improving agricultural Extension in an uncertain future, 

with a focus in organics and examples from the Seed to Kitchen Collaborative 

 

Introduction 

 Agriculture is fraught with uncertainty and risk, and that has never been truer than now. 

As the world’s population continues to grow, farmers are asked to produce more while extreme 

temperature and weather events lead to crop losses and serve as a reminder that industrialized 

agriculture is a paradox: it is seen as essential to feeding a growing population yet at the same 

time comes with external costs that threaten human existence. Natural disasters and low 

commodity prices have required billions of dollars in federal bailouts and insurance payments to 

keep farmers on the land. Additionally, consumers are demanding more ethical and 

environmentally friendly food production. Meanwhile, the COVID-19 pandemic has created 

unprecedented circumstances with uncertain futures. Farmers are at the center of this chaos 

trying to ensure their own family’s wellbeing while simultaneously growing the food we put on 

our tables. Weighing all these demands makes a farmer’s job unenviable.  

 Due to shrinking resources and expanding roles, today the job of Extension agents isn’t 

enviable either. In Wisconsin for example, roughly 100 people work for Cooperative Extension 

on crops, but there are over 64,000 farms in the state (DATCP, 2020). In their national 

assessment of Cooperative Extension Services, Warner and Christenson (2019) describe a history 

of budget tightening by appropriators, which has pressured Extension to prove its worth and 

severely limited its ability to assist farmers and the public (Chaudhary & Radhakishna, 2018). 

79



With 17,000 employees, Extension’s national annual budget stands at $800 million (Warner and 

Christenson, 2019). This insufficient public funding has caused further diversion of Extension’s 

time and energy, which is increasingly being spent on finding and applying for supplemental 

resources.  

 The sheer volume of farms that each county or state agent is responsible for assisting is 

overwhelming enough, and a bigger challenge is the diversity these farms represent. Wisconsin 

has more than 1500 organic farms – second in the United States only to California - but only a 

handful of county and state specialists with a focus in organic production (USDA, 2017), and 

that is considerably better than other states who have none. Whether a 400-acre conventional 

dairy or a five-acre integrated biodynamic operation, no two farms are alike. They all essentially 

require individualized solutions. This is especially true in organic and sustainable agriculture 

(Park & Lohr, 2007), which needs multifunctional innovation in addition to personalized, place-

based solutions. Extension has historically tried to provide one size fits all resolutions which 

often ignore the realized variation in farming methods, sizes, and styles (Houser & Stuart, 2019).  

 Navigating the diversity among farms doesn’t include only methods and practices. 

Philosophy, history, and cultural differences have to be acknowledged, too. For example, a 

beginning farmer, a farmer of color, and a white farmer whose family has owned the land for 

decades will inherently face different challenges personally and professionally. Any or all of 

them could call on Extension for assistance, and Extension agents must understand how history, 

society, and culture affect the past and present agricultural landscape in order to truly be of 

service. With the challenges facing farmers and Extension agents, it is time to take a step back. 

We must consider how Extension can become a more meaningful and relevant partner for 

farmers amid uncertainty and volatility.  
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 Recognizing the existing connections between people introduces powerful new ways for 

understanding situations, behaviors, and incentives of food system stakeholders including 

farmers (Goetz et al., 2017; Chaudhary & Radhakishna, 2018). The structure of this network 

(who is connected to whom) and the nature of these relationships are equally important and 

informative. Working with networks for agricultural research, education, and outreach addresses 

Extension shortcomings and embraces peer-to-peer learning that is effective for farmers. 

Likewise, network mapping can identify leaders and disconnected individuals both of whom can 

have important roles. Better understanding and utilization of networks is key to improving 

Extension’s outreach now and for the future. 

 While networks are a tool that can and should be applied to all types of agricultural 

research and outreach, this chapter focuses on their use in organic systems. The International 

Federation of Organic Agriculture Movements approved the following definition in 2008: 

“Organic agriculture is a production system that sustains the health of soils, ecosystems and 

people. It relies on ecological processes, biodiversity, and cycles adapted to local conditions, 

rather than the use of inputs with adverse effects. Organic agriculture combines tradition, 

innovation and science to benefit the shared environment and promote fair relationships and 

good quality of life for all involved” (Kings & Ilbery, 2012). The organic sector continues to 

grow in both sales and acreage spurred largely by consumer demand that continues to increase 

(see Figure 3.1; Organic Trade Association, 2020). The diversity of practices, farming 

philosophies, and approaches makes organic farming exceptionally difficult for Cooperative 

Extension to address in its traditional way, which envisions outreach and education as a linear 

transfer of information (Wood et al., 2014; Park & Lohr, 2007). These are the same qualities that 

make organic systems particularly well-suited to the application of networks (Chroma, 2008), 
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which is illustrated by their occasional use already. In Wisconsin, joint research-Extension 

initiatives that have come about in the last few years like the Organic Grain Research and 

Information Network (OGRAIN) and the Seed to Kitchen Collaborative are examples of 

successful network-based strategies employed in research, outreach, and education.  

 The Seed to Kitchen Collaborative (SKC) is based out of the Urban and Regional Food 

Systems Lab at the University of Wisconsin – Madison. SKC is a participatory research network 

that links growers, researchers, plant breeders, seed companies, and local end-users like chefs 

and bakers to identify and develop high-quality vegetable varieties for organic farms in the upper 

Midwest. The program trials vegetable varieties on university research stations and local farms to 

provide information that regional organic farmers need to make variety choices. The information 

is also useful for breeders and seed companies who want to know how new cultivars or breeding 

lines perform in the region. The participatory approach taken by SKC invites both farmer 

suggestions and independent breeder/seed companies to submit entries into the trials. 

Researchers and graduate students collect data for traits like yield and disease resistance, and the 

group evaluates flavor and eating quality by partnering with local chefs, their field crew, and the 

general public to do variety tastings. The results are posted to SKC’s website and dispersed to 

each group of stakeholders via email and in-person meetings. 

  In this chapter, the general implications of more widespread network use in Extension 

and agricultural research are drawn out as ways to mitigate historic shortcomings and encourage 

farmer learning. SKC is used as an example of the meaningful work that can be done when 

networks are used as a tool by reporting on feedback from a recent survey of SKC stakeholder 

groups (farmer responses = 19, chefs = 6, and breeders/seed companies = 6). Complete survey 

summaries are available in Appendix H. Finally, network mapping is discussed as a way to 
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identify important individuals and guide Extension programs and goals with a look at potential 

approaches to mapping SKC as a prospective project. In looking towards the future of farming, 

change is inevitable, but whether or not Extension will be an active participant in the shaping of 

this process remains to be seen. Network-based tools and concepts will be vital if Extension is 

going to step up and be a valuable partner for the future of agriculture and society. 

 

A Brief History of Extension and Organic Agriculture in the United States 

 The 1914 Smith-Lever Act created the Cooperative Extension Service “to empower 

farmers, ranchers, and communities of all sizes to meet the challenges they face, adapt to 

changing technology, improve nutrition and food safety, prepare for and respond to emergencies, 

and protect our environment” (USDA). Since its beginning, Cooperative Extension has been seen 

as a messenger and helped spread the latest university-produced research and technology to 

farmers (Park & Lohr, 2007). While the mission ostensibly was education, effectively Extension 

enticed growers to adopt the latest tools and innovations provided by industry. Removing the 

burden for farmers to do on-farm experimentation and refining technologies that improved yields 

for farm livelihoods and food security was seen as a win-win.  

 The major industrial growth and technology advancements spurred by the world wars 

created broad social changes. Admittedly, these changes, both broad and location-specific, 

cannot fully be described in this chapter, and readers are encouraged to seek out the trove of 

scholarship on the topic. Here the goal is to provide a historical context for the rise of organic 

agriculture as a counter-current to mainstream ideas.  
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 The post-war era was marked by increasing segmentation, mechanization, and 

specialization in just about every industry and sector. Agricultural research became the job of 

Land Grant universities rather than innovative farmers. And gradually college departments grew 

and split into smaller more distinct fields of study with less crosstalk. Extension’s job was to 

translate the scientific results from the university to farmers, while the farmer’s job became 

solely to produce, produce, produce. It was this type of reductionism and specialization that led 

to the formulaic mentality of chemical-based agriculture that persists today (Chroma, 2008). This 

was the birth of an entirely new type of farming where farmers were expected to eagerly adopt 

the latest technology (ex: fertilizer, equipment, hybrid variety) in order to make an economic 

boom (Houser & Stuart, 2019). Otherwise they risked going bust. Before this reductionist 

approach to agriculture and the rise of the global commodity market, farmers were not 

necessarily engaging with salespeople who wanted farmers dependent on their products, nor was 

farming success gauged exclusively by yields and profits (Aeberhard & Rist, 2009). From this 

point on, there were more and more stakeholders with increasingly specific and vested interests 

in on-farm practices. 

 While agriculture and the world changed drastically, organic farming persisted as an 

alternative despite the characterization by most Land Grant scientists that it was an antiquated, 

inferior version of agriculture that foolishly rejected chemicals, rather than one based on living 

systems. At one point, it was described in publications as “Third World agriculture” that would 

never catch on (Agunga & Igodan, 2007). In the English-speaking world, F. H. King, Sir Albert 

Howard, Rudolf Steiner, and Lady Eve Balfour are considered some of the pivotal founders of 

organic agriculture. The influences of Black and other people of color like George Washington 

Carver, Fannie Lou Hamer, and Booker T. Whatley need also be remembered even in brief 
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historical recounts. Notably, however, the inspirations for this supposedly new school of thought 

were highly derivative from traditional techniques and ideas about environmental, soil, and pest 

management in India and China, and these contributors should not be forgotten either. Sir 

Howard articulated a “living bridge between soil life, crops, livestock, and mankind’s health” 

(Heckman, 2005) that explained the philosophy of organics in a nutshell. In his 1940 manifesto 

Look to the Land, Lord Northbourne was the first to use the word “organic” in print to describe 

“having a complex, but necessary interrelationship of parts, similar to that in living things” 

(Paull, 2014).  

 The period from 1940 to 1979 saw gradual overall growth for organic farming against a 

backdrop of increasing socio-political polarization. In 1942, J.I. Rodale started publishing his 

Organic Farming and Gardening magazine. By 1960, over 260,000 subscriptions were 

purchased, and 20 years later, subscriptions reached 1.3 million (Heckman, 2005). Part of this 

growth was due to the alignment between organic proponents and the environmental movement 

that started in the early 1960s. The environmental movement was (and still is) highly politicized 

(McCright & Dunlap, 2011), which in turn brought organic agriculture into the political fire, too. 

And with politics comes public debate and criticism as even more groups of people became 

invested in what farmers do and how they do it. 

 From 1979 to the early 2000s, organic agriculture gained gradual recognition and 

acceptance mostly due to public interest and demand. In 1979, California became the first state 

to establish a short-lived law defining organic standards, and in 1981 the American Society of 

Agronomy held its first organic symposium. While there were certainly times when political 

agendas did much to bury efforts to advance organic farming, in 1990, passing of the Federal 

Organic Foods Production Act set the stage to establish national “standards, accountability, and 
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facilitate commerce for organic products” (Heckman, 2005). The law also established the 

Organic Research and Extension Initiative (OREI), although it was 14 years before they gave out 

their first grants. And it was over a decade after the law’s passing before any agreement was 

reached on the USDA’s National Organic Standards (NOS) in 2002. Still today, the NOS is 

contentiously debated.  

 Today there are strict labeling and certification rules and even entire businesses that focus 

solely on organic products and trade which have become part of everyday life. In 2019, organic 

made up 5.8% of total agricultural sales (Organic Trade Association, 2020). Both sales and 

acreage are at all-time highs (see Figure 3.1; Organic Trade Association 2020), and consumer 

trends focused on environmentally friendly and transparent food production will likely continue 

to drive demand (Reganold & Wachter, 2016). In the 2018 Farm Bill, OREI was boosted to 

baseline funding of $50 million to help respond to these demands and support the organic 

community through research and Extension. Even with additional funding and grant 

opportunities, Extension and research efforts focused on organics will benefit from the use of 

networks to maximize their impact. 

 

Figure 3.1 The growth of organic sales in the United States from 2010 to 2019, values are in one 
hundred thousand USD (Organic Trade Association, 2020). The same trend is visible in organic 
acreage, which reached 3.1 million acres in 2019 (Organic Trade Association, 2020). 
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Addressing History and Extension Shortcomings with Networks 

 The stories of the past shed light on current farmer perceptions of Extension and some of 

Extension’s historic shortcomings. Organic farmers historically have been ignored by the Land 

Grant university system and their Extension services. In some cases, organic growers were even 

ridiculed, which for decades forced them to become innovators and experimenters on their own. 

Importantly, it was through social networks that these farmers shared and legitimized their 

questions and solutions with other people (Hassanein, 1999; Chroma, 2008; Gailhard et al., 

2014). So historically, informal farmer networks have underpinned the spread and adoption of 

organic innovations, and therefore seem an obvious tool for improving partnerships between 

organic growers and Extension today.  

 This farmer-led inquiry was very different than university-led research because it was 

often reactive to a problem and not designed nor analyzed with statistics the same way as 

university science. Critics characterized farmers as unqualified and illegitimized their on-farm 

experimentation (Aeberhard & Rist, 2009). Tensions grew between the two sides as organic 

farmers felt neglected and unsupported. In the 1980s and 90s, organic proponents publicly 

accused Land Grant researchers (and in effect their Extension systems) of being “wedded to 

conventional agriculture” (Agunga & Igodan, 2007). 

 Luckily, this relationship has improved. In a survey of 99 Ohio organic farmers, 70% 

expressed a strong interest in Extension information and services (Agunga & Igodan, 2007). 

Today’s organic farmers seem both willing and excited to partner with researchers and Extension 

to move forward. Unfortunately, the same survey found a similar majority (69%) of organic 

farmers thought Extension agents did not know enough to help them nor understand the real 

needs of organic farmers (Agunga & Igodan, 2007). Others have found similar opinions and 
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perceptions both in the United States and across the globe: Extension is ill-equipped to help with 

adaptable or farm-specific solutions, which is what organic farmers need (Rodriguez et al., 2008; 

Park & Lohr, 2007; Sarker & Yoshihito, 2009; Wood et al., 2014; Gailhard et al., 2014). 

 Margaret Chroma (2008) at Cornell encapsulates these thoughts in an interview with a 

New York organic grower involved in farmer-led research: “In our group, the statement of 

problems and the solutions come from the farmers. Whereas in the Extension model, the problem 

statement comes from Extension educators and the solutions come from Extension educators” 

(emphasis added). So, while attitudes seem to have changed between organic farmers and 

Extension, the perceived disconnect appears unresolved. 

 Perhaps the flip side of the same coin is how agricultural research has changed since the 

inception of Extension and the Land Grant universities. Agriculture of any type is inherently 

complex and dynamic. And even though the foundations of statistics and experimental design are 

rooted in agricultural research, by its nature, farming does not lend itself well to formal 

experimentation. Any attempt to make a question more visible or studiable makes it less realistic 

agriculturally. The history of agricultural research has been to separate and study the sub-

components of farming, and the results have often been used to develop and market products for 

selling to farmers, not to necessarily understand agriculture as a whole (Stone, 2016). 

 For many proponents of organic and sustainable agriculture – both grower and non-

grower – the understanding of agriculture transcends the boundaries of university departments. 

Farming plays a vital role in the health and strength of rural communities, and certain practices 

can reflect spiritual beliefs and cultural identities (Boody et al., 2005). In other words, agriculture 

is “more than a means of livelihood, it is [also] a way of life” (Sutherland, 1987).  
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 The incredible variety of organic farming practices have developed from diverse views of 

nature and values shaped by places, people, and politics (Kings & Ilbery, 2012). These varying 

farm philosophies and values ultimately drive different knowledge and innovation needs in the 

organic and sustainable communities because they have a systems-based understanding of 

agriculture rather than a narrow scientific understanding of its underlying parts (Chroma, 2008; 

Wood et al., 2014; Gailhard et al., 2014). Understandably, it has been exceptionally hard for both 

Extension and researchers to consider these factors in their work. The difficulty comes from both 

the inherent complexity of transdisciplinary research and also from their own institutional 

cultures (Park & Lohr, 2007), which ask them to be politically neutral and encourage projects 

that are more intrinsically “scientific” with tangible deliverables (Warner & Christenson, 2019). 

Regardless, Extension’s ability to incorporate these issues as part of research and education is 

fundamental for being a critical resource in today’s agriculture and society. 

 Organic farmers need multifunctional solutions not solely limited to the bio-physical 

aspects of farming, but ones that also consider social, cultural, and economic impacts over time 

and space. Surveys show that while organic farmers appreciate and value the information 

Extension provides around production and environmental conservation, their biggest needs are 

around issues like land tenure, time, access to appropriate inputs and equipment, marketing 

challenges, and navigating bureaucratic red tape (Rodriguez et al., 2008; Lubell & McRoberts, 

2018; Piercy et al., 2011; Sarker & Yoshihito, 2009; Agunga & Igodan, 2007). Networks are 

well-suited to helping Extension in these areas where they have historically fallen short. 

Embedding Extension work into multidisciplinary networks helps Extension stay relevant and 

reach an increasingly diverse group of stakeholders while also creating spaces for farmers to 
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build leadership and problem-solving capacity among themselves (Healy & Dawson, 2019; 

Chroma, 2008; Wood et al., 2014; Gailhard et al., 2014).  

 SKC does this by partnering with local chefs and end-users who have become more 

important partners in local food systems over the last few decades (Polling et al., 2017; Lang, 

2019). Nearly half of farmer respondents to SKC’s stakeholder survey reported that restaurants 

are a part of their primary market outlets, and in at least one instance, a farmer and chef have 

independently contracted to grow a specific pepper variety for the chef to feature (Healy & 

Dawson, 2019). A large contract like this can afford the farmer some financial stability and 

purchasing power for resources. In another instance, when asked about their favorite experience 

working with SKC, one farmer said, “the winter squash trial really inspired us in terms of the 

potential for new varieties and exceptional flavors. This also gave us ideas and clarified some of 

our own priorities for the traits that suit our operation.” In this case, being a part of SKC’s 

network facilitated this farmer finding what works best for them, which could make planning 

future seasons more efficient. 

 SKC has a participatory tomato breeding project with a handful of regional farmers that 

also illustrates how networks can be helpful in organic research, education, and outreach. The 

initial tomato crosses were done by UW graduate students in a campus greenhouse, and SKC has 

been selecting promising lines and individuals over the last few years based on their university 

trials. Participating farmers were also sent early generations of these crosses to make their own 

selections along with an open invitation for questions or assistance from SKC researchers. There 

is much already published on the benefits of participatory plant breeding, which focuses mostly 

on farmers gaining new skills around breeding, selecting, and seed saving as well as the ability to 

develop locally or farm-specific adapted varieties (Healy & Dawson, 2019).  

90



 In their survey response to their favorite SKC experience, one farmer participant said 

“[SKC] gave me the resources and reason to save my own tomato seed. This was a first for me as 

a grower of 25 years.” This is the type of skill and capacity building that comes along when 

networks are used as a tool. Before the initial seed was sent to farmers, SKC sought feedback for 

what types of tomatoes sell best in each of the farmer participant’s market, which allowed the 

project to be tailored to individual farms with minimal effort. In a personal communication, one 

of these participating farmers also talked about an unforeseen outcome: bringing the breeding 

lines to their market stand and highlighting the project seemed to attract a new group of buyers. 

So, in addition to the development of tomato varieties that are well-adapted to organic farms in 

the upper Midwest, farmers are gaining new skills and confidence, receiving more individualized 

solutions, and discovering new market niches. These are the types of multifunctional solutions 

needed by organic farmers, which Extension has largely been unable to deliver. 

 By doing research and outreach with a network approach, long-term goals and priorities 

are determined collaboratively while simultaneously encouraging farmer capacity to do self-

innovation and discovery (Healy & Dawson, 2019). Networks then allows these ideas to spread, 

evolve, and become legitimized by other farmers (Gailhard et al., 2014). This approach 

importantly centralizes farmer expertise rather than implying the dominance of university 

science and embraces the history of collaboration and resilience in organic farming research. 

These are both key to Extension and Land Grant universities becoming more meaningful 

partners for organic growers in the future. Furthermore, working within network structures may 

provide avenues for farmers to hold Extension and Land Grant universities more accountable in 

their research and education endeavors. SKC still experiences some drawbacks with their 

approach since the lab still acts as a hub for planning and communication, and these logistics 
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become more time-consuming as the network grows. Some of the specific challenges identified 

by the recent survey will be discussed in the section on “Looking Forward: Network Mapping 

Possibilities.” 

 

Networks are Built for Farmer Learning 

 How farmers learn has been a subject of study for decades. A consensus has emerged that 

involves both social learning – learning by watching what other farmers do – as well as didactic 

learning – learning from some type of instructor (Dolinska & d’Aquino, 2016; Stone, 2016). The 

instructors in didactic learning come in many forms. They may be government or certifier agents, 

Extension educators, Land Grant researchers, non-profit and NGO representatives, or 

developers/sellers from an industry. Nonetheless, they are all senders of information that farmers 

take in and consider. Network-based strategies allow for educators and researchers to leverage 

these two learning types at the same time. 

 Linking farmers to diverse stakeholders (i.e. the instructors in didactic learning) is one 

way to make their learning more efficient. By bringing differing viewpoints together, farmers get 

a more complete picture presented at once with less opportunity for one person or group interest 

to be louder than the others. Likewise, some problems may require expertise of people not 

typically involved in agriculture or organic systems such as lawyers or municipal officials. 

Facilitating networks also creates opportunities for developing deeper interpersonal relationships, 

which are more influential than mass communications (Rimal & Lapinski, 2015).  

 Fostering and strengthening relationships was another founding principle for SKC when 

they sought to create a network of plant breeders and researchers, seed companies, chefs, and 
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organic growers. SKC recently found out through their survey that their reach extends to other 

occupations and groups too. Stakeholders were asked with whom they shared their SKC results 

and experiences with, and most farmers said, “other farmers” (84%), “local chefs” (53%), and 

“customers” (47%). A few also provided write-in answers saying they shared their experiences 

with financial backers and donors, class visits from local schools, and Soil Sisters Wisconsin, a 

women-led program part of the non-profit organization Renewing the Countryside. One seed 

company added they shared their experiences with distributors, and three chef respondents said 

they shared with produce sellers, although it’s unclear if these produce sellers were also farmers. 

 Agricultural educators have historically approached their work assuming farmers simply 

lack information, and while unjustly so, the trend continues today (Rodriguez et al., 2008). 

Historically, much university-disseminated information has not been relevant for organic 

systems, like providing spray recommendations for plant disease rather than cultural control 

methods.Unfortunately, university information was more likely to point out problems with 

organic systems rather than propose research-based solutions, which hasn’t encouraged farmers. 

Luckily, this is changing, and growers are eager for the research starting to come out of realistic 

organic systems. At the same time university and Extension colleagues view organic systems and 

growers with increased respect and recognition that they are important parts of the agricultural 

community (J. C. Dawson, personal communication). In addition to this information, organic 

farmers need motivation, support and trust (Piercy et al., 2011; Park & Lohr, 2007). Extension 

must switch to privileging the learning process rather than the specific information, innovation or 

technology they are trying to spread. So, while linking farmers to other relevant stakeholders is 

critical, perhaps more important is connecting farmers with each other to create more 
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opportunities for social learning and communities of practice (Dolinska & d’Aquino, 2016; 

Wood et al., 2014; Gailhard et al., 2014).  

 Farmer-to-farmer connection is central to participatory research whose whole premise is 

collaborative and collective inquiry grounded in the real-life experiences of farmers and their 

locality (Piercy et al., 2011). It is considered essential to advancing and improving organic 

agriculture for the future (Ponzio et al., 2013; Gailhard et al., 2014) because what results is a 

body of practical knowledge better suited for those it’s intended for (i.e. organic farmers) (Piercy 

et al., 2011). In studies of grazing networks in New Zealand and Australia, graziers were more 

likely to adopt a practice if it had been generated through a group process (Beaman et al., 2018; 

Wood et al., 2014), and in general, organic farmers in the United States enjoy the opportunity to 

participate in research (Piercy et al., 2011).  

 Farmers also prefer to and learn best from other farmers (Stone, 2016; Ponzio et al., 

2013; Chroma, 2008; Piercy et al., 2011; Gailhard et al., 2014). This is probably because farmers 

see their peers as experts and also due to higher levels of trust that stem from shared experiences 

and overlapping values. Most often, farmers seek out other farmers when they are having 

problems or need advice, and they are typically eager to share their experiences with others 

(Jansen et al., 2010; Agunga & Igodan, 2007). In the same survey of Ohio organic farmers, 87% 

sought out other farmers for information while only 16% reported using Extension (Agunga & 

Igodan, 2007). A similar situation seems to be true for the farmer respondents in SKC’s impact 

survey. When asked which information sources were most important in their decision-making 

around variety selection, 73% of the respondents said another farmer’s recommendation was 

“very” or “extremely” important. Similarly, 71% of farmer responses said they were “very 

likely” to share what they learn in SKC with others.  
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 Part of the reason for the effectiveness of participatory research is the increased 

opportunities for social learning among farmers with hands-on activities and on-farm 

demonstrations (Piercy et al., 2011; Wood et al., 2014). Importantly, while networks and groups 

are essential for farmer-to-farmer learning, the learning and collaboration process still has to be 

actively facilitated (Chroma, 2008; Wood et al., 2014), which should be the role of Extension. 

The farmer respondents in SKC’s survey echoed their appreciation for hands-on experience and 

empirical observation. When it came to which information was most impactful for their variety 

selection decisions, 89% said the observed results of their own on-farm trial were “very” or 

“extremely” influential, and all except one farmer (95%) said that seeing variety performance on 

their own farm was a “very” or “extremely” important part of their participation in SKC. The 

farmer survey responses also seem to corroborate the necessity of farmer leaders. Only 11% and 

16% of responses said that the January stakeholder meeting in Madison and visits to the 

university research station, respectively, were “very” or “extremely” important for their decision-

making. Notably, both activities are researcher-led, which may underscore why farmers find 

them less valuable. 

 Facilitating farmer networks can also address various obstacles to farmer learning. 

Inconsistencies of a technology or practice over time and space is one barrier to agricultural 

outreach and education (Dolinska & d’Aquino, 2016), and unrecognizability of products caused 

by brand names or hybrid seed aliases (like in corn) is exacerbated by marketing (Kloppenburg, 

2004). Organic farmers also must pay close attention to active ingredients, product formulations, 

and regulatory constraints while navigating confusing advertising to avoid jeopardizing their 

certification. Modern agricultural science and technology are also advancing much faster than 

farmers and the public can have a conversation or assess the situation (Dolinska & d’Aquino, 

95



2016). If experience, information, and opinion sharing can be facilitated with the use of networks 

by Extension, then these impediments to farmer learning and knowledge gain can be diminished. 

 On-farm demonstrations, pasture walks and field days are some familiar and practical 

examples of bringing farmers together to facilitate these conversations. Farmers must also be 

central to the leading and planning of these events to make them most effective. One SKC farmer 

responded to a survey question about their favorite SKC memory by saying, “meeting at events 

with other farmers and chefs to discuss successes and favorites.” Farmers were also asked if 

participation in SKC had led to other changes on their farm other than adopting a new variety. 

One farmer responded they “changed their [hoop house] tomatoes because of the field day visit,” 

and another reportedly adjusted spacing for lettuce and potatoes for the same reason. In some 

ways, these unforeseen benefits can be thought of as emergent properties brought about by the 

use of a network. 

 These outreach and education activities can also play a role by reinforcing social norms 

among farmers. In the context of agricultural outreach and education, social norms are often 

framed as a potential mechanism for instigating widespread adoption of a certain practice, 

technique, or innovation by addressing social barriers (Matous et al., 2013; Beaman et al., 2018; 

Griskevicius et al., 2008), but this is not what Extension should be after. The diversity of organic 

agriculture is inherently one of its strengths. By facilitating networks and creating communities 

of practice, new discourse and norms are formed that can provide the framework for individual 

actions which enhance roles in collective knowledge production (Gailhard et al., 2014; Dolinska 

& d’Aquino, 2016). In other words, the goal is not to normalize and spread a specific agricultural 

idea but rather the practice of co-generating knowledge and motivating farmers to participate in 

this process.  
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 Farming behaviors, values, and philosophies also move along cultural and gender lines, 

and farmers – like people in general – show a preference for learning from others that are most 

similar to them (Park & Lohr, 2007). Female farmers prefer and are more comfortable learning 

from other female farmers (Trauger, et al., 2008). The same can be said for queer farmers 

(Wypler, 2019) and farmers in various ethnolinguistic or religious groups (Matous et al., 2013; 

Stone, 2016). Obviously, this poses additional challenges for Extension agents, but careful 

facilitation of on-farm research and outreach activities can allow farmers with common identities 

to meet and form new bonds. This is another way of building local leadership and capacity as 

well as trust and strength among farmers while also making room for cultural respect and 

relevance. 

 

Network Mapping Can Identify Important Individuals 

  While network frameworks can help deploy research and Extension efforts in organic 

agriculture, visualizing their structure with mapping techniques also stands to assist Extension in 

becoming a better partner for organic growers. After being observed in several locations, a core-

periphery structure was assumed to be the default way that farmer networks organized 

themselves (Piercy et al., 2011; Lang, 2019). This type of structure (seen in Figure 3.2) features a 

central (i.e. core) group of farmers who have more frequent and extensive communication with 

each other and outside stakeholders, while a peripheral group sits on the edges. The periphery 

members may still have some connection to core members, although generally they are not as 

densely connected. 

97



 

Figure 3.2 An example of a network with a core-periphery structure. Core members are the 
black-colored dots and are densely connected to one another while the periphery group is gray. 
(Gluckler & Ries, 2012).  
  

 More mapping of farmer knowledge and information networks in the United States and 

abroad, however, has revealed quite the diversity of network forms aside from the core-

periphery. In some cases, no core group nor structural hierarchy can be identified (Goetz et al., 

2017; Wood et al., 2014; Chaudhary & Radhakishna, 2018; Gailhard et al., 2014), which extends 

the idea that each farm is unique to each farmer network as well. Some describe agricultural 

networks as “distributed systems” (McRoberts & Lubell, 2018) where relevant information is 

developed and communicated by a wide range of stakeholders organized in complex and 

dynamic ways.  

 SKC has not formally mapped their network, which is unfortunate because relatively few 

agricultural network maps have included non-farmer stakeholder groups. Anecdotally however, 

there is no obvious core group of farmers, although there does appear to be a central group of 
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chef collaborators. Three out of the six chef survey respondents said they were introduced to 

SKC by another chef, and researchers have noticed a consistent group that show up for meetings 

and tasting events more reliably than others. On a day when chefs were invited to tour the 

university research station trials, this core group of chefs also brought several members of their 

restaurant staffs, which shows how they can introduce new people into the network. 

 Whether looking at a network map of chefs, farmers, or another stakeholder group, 

individuals who are more centrally located or densely connected could be of particular interest 

for Extension. Figure 3.3 shows an actual network of small-sized farmers served by an Extension 

program in an unnamed State (Goetz et al., 2017). The yellow dots represent farmers, and the 

arrows indicate the direction of information flow. Arrows pointing toward a yellow dot, for 

example, indicate that another grower is coming to that farmer for advice or information. When 

visualized, the handful of densely connected farmers becomes obvious. These farmers can act as 

gatekeepers who decide which information to pass on to others (Granovetter, 1983). They can 

also play an important role as opinion leaders, so named because they are well-respected by their 

peers and highly visible in their communities (Shaw, 2010). They open doors for identifying 

innovative responses to problems that are locally meaningful and lead the acceptance of non-

farmer agents in the network (Keys et al., 2010; Valente & Pumpuang, 2007). Identifying and 

engaging with these leaders is imperative for Extension because of their role in information flow; 

they not only help diffuse behaviors, attitudes, beliefs and motivations (Valente & Pumpuang, 

2007; Gailhard et al., 2014), they can also relay relevant issues and problems facing farmers to 

develop Extension goals and programs. It is likely that early engagement with SKC’s chef 

opinion leaders is one reason for the program’s growth and success over the years. 
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Figure 3.3 A network map of small-sized farmers served by a specific Extension program in an 
unnamed State from Goetz et al. (2017). Yellow dots represent farmers, and arrows indicate the 
direction of information/knowledge flow. Notice a central group of densely connected 
individuals as well as a less connected periphery including several individuals completely 
unconnected to others. 

 

 Figure 3.3 clearly shows not all the farmers are connected; there are two pairs and four 

individuals who are disconnected from each other and the rest of the farmers in this network. In 

addition to those highly connected, these unconnected individuals may also be worth more of 

Extension’s attention. Since these farmers are not embedded in the network, they can be less 

impacted by the influence and judgements of others, which in some cases has made them hubs of 

innovation and ingenuity (Chroma, 2008; Beaman et al., 2018; Sarker & Yoshihito, 2009). 

Extension’s goal might be to connect these individuals and invite their contributions into the 

network so other members can learn. 

 As Extension tries to use networks more, it is necessary to emphasize that networks are 

both dynamic and contextualized. While relatively few studies have formally mapped networks 

of diverse stakeholders in agriculture, one Master’s thesis at the University of British Columbia 
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did map the north Okanogan regional food system (Lang, 2019), and Chaudhary and 

Radhakishna (2018) mapped the University of Pennsylvania’s Extension system. Most mapping 

of agricultural networks has included only farmers even though agriculture doesn’t exist in a 

bubble. It sits at the crossroads of many industries and players, so mapping other participants in 

food system networks needs to happen more because there are surely more insights. Figure 3.4 

shows a network of 17 ranchers (blue dots) and five scientists (orange dots) working together on 

a grazing project in New Zealand (Wood et al., 2014). Notice the scientists are clustered together 

while the farmers are more distributed. Despite scientists recruiting the rancher participants in 

this study, no hierarchy is present. Instead, what can be seen is a flat, spanning, and overall 

densely connected network. While the scientists appear well-connected and embedded in the 

network, their non-farmer roles likely make their opinions and information less salient for 

ranchers, which adds complexity to the situation (Wood et al, 2014; Gailhard et al., 2014). 

Formally mapping organizations like SKC and other diverse stakeholder networks may enlighten 

ways to go about research and Extension by revealing connections or the lack thereof and the 

relevance of certain roles and individuals (Gailhard et al. 2014; Chaudhary & Rashakishna, 

2018). 
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Figure 3.4 A network map of five scientists (orange dots) and 17 ranchers (blue dots) working 
on a grazing project in New Zealand (Wood et al., 2014). This is the network of contact prior to 
the start of the project. Despite the scientists recruiting rancher participants, there is no hierarchy 
in the network structure, which instead shows a densely connected, flat, spanning network of 
relationships. Network position does not tell the whole story, however, as opinions from 
researchers do not have equal salience as those from other ranchers. 

 

 In addition to network structure changing based on who is being mapped, networks of the 

same people can shift depending on what type of information is flowing (Chaudhary & 

Radhakishna, 2018). Figure 3.5 is an adaptation of Figure 3.3 that shows the same network of 

small-sized farmers when looking only at the flow of marketing information and advice (Goetz et 

al., 2017). For this small-sized farmer network, the connections between people changed when 

looking at the sharing of resources versus marketing information or equipment sharing. This 

could create potential concern for using network tools in Extension. 
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Figure 3.5 Patterns of marketing information exchange in a network of small-sized farmers. This 
is the same network of small-sized farmers shown in Figure 3.3 from Goetz et al. (2017). The 
flow of marketing information and advice is shown by the blue arrows. The lighter gray arrows 
show the overall network from Figure 3.3. In other words, the gray arrows show relationships 
that are meaningful for one type of information (ex: production advice or equipment sharing) but 
not for exchanging marketing information. 
  

 While the shifting connections may seem like a challenge, they are actually a tool to 

inform education and outreach efforts. A recent Master’s student at Michigan State University 

used network mapping to propose solutions to challenges faced by the state’s beginner farmer 

training programs. Network maps showed that certain issues like equipment and resource access 

might be easily improved by simply making new connections between training programs 

(Comer, 2019). The author also emphasized that creating new ties between groups should come 
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with active facilitation that promotes collective problem-solving and empowers beginning 

farmers without positioning Extension as “granters of power” (Comer, 2019). 

 Formal network mapping may also have additional use for Extension in terms of the 

complementary metrics it can provide (Chaudhary & Radhakishna, 2018). While not the focus 

here, various statistics can be calculated using network maps that describe qualities like how 

connected the network and each individual is, or the amount of control the average individual has 

over information flow (Wood et al., 2014; Goetz et al., 2017; Granovetter, 1983). The 

quantitative information that comes out of network mapping may have utility for evaluating 

Extension impacts and social benefits of participatory research (Warner & Christenson, 2019; 

Chaudhary & Radhakishna, 2018). Both of these have been discussed as barriers to increased 

funding and adoption of this type of work in agriculture (Park & Lohr, 2007; Healy & Dawson, 

2019; Comer, 2019; Warner & Christenson, 2019).  

 

Looking Forward: Network Mapping Possibilities 

 As SKC researchers have realized the powerful effects of network use in their research 

and outreach, there has developed a new interest in visualizing their network by creating its map. 

After attending a conference in upstate New York, SKC came about in 2013 as the brainchild of 

UW researchers and local chefs in the Madison area (Healy & Dawson, 2019). It became clear 

that by linking chefs, farmers, plant breeders, and researchers, there was much to gain for 

everyone involved. It is important to realize, however, that people are already connected to 

others in less official ways. In some cases, Extension or research endeavors may warrant creating 

or formalizing a new network like in the case with SKC, while there may also be existing 
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networks with percolating potential that Extension agents and researchers can access. Network 

mapping may help identify these less formally organized groups so Extension can better engage 

and plan with them in mind. This section looks at two possible approaches to network mapping 

for SKC (and others) in the future. 

 In general, there are two approaches to network mapping: participatory and software-

based. The two processes are summarized in Table 3.1 along with some of their advantages and 

disadvantages. The software-based approach is considered the more formal of the two, although 

its methods are somewhat prohibitive due to more arduous data collection and the cost and 

expertise required to use the software (Goetz et al., 2017). Participatory mapping is a relatively 

new topic in the social sciences and so far, has been applied mostly in global health campaigns 

(Lang, 2019; Chaudhary & Radhakishna, 2018). While less systematic and more time-consuming 

than software-based approaches, participatory network mapping surely has more applications for 

agricultural and food systems work (Lang 2019).  
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TWO APPROACHES TO NETWORK MAPPING 

Step One: Identify Goals and Boundaries  
-What is purpose of map/network? (Identify gaps and connections, solve farm-related problem, etc.) 
-What are the geographic boundaries? (State, county, watershed, etc.) 
-Who are the people being mapped? (Farmers, researchers, chefs, etc.) 
-What type(s) of relationships are being mapped? (Equipment sharing, production info., policy work, etc.) 

PARTICIPATORY APPROACH SOFTWARE-BASED APPROACH 

Step Two: Gather participants Step Two: Generate list of members 
- Introduce activity and identify core and 

periphery with participants (individually or altogether) 
- Existing groups/networks; Extension and census 

data; conferences; snowball sampling 

Step Three: Mapping activities Step Three: Survey/Interview Members 
- Participants place stakeholders and map 

relationships in core and periphery from own 
perspective (see Lang, 2019) 

- Careful survey construction: "Who do you go to 
for _____?" See Goetz et al. (2017). 

- Can be done once or multiple times and 
combined Step Four: Enter data into software 

  - UCINET; NetDraw; Tulip and many others 

Step Four: Present and Discuss Results Step Five: Present and Discuss Results 
- New ideas and connections - New ideas and connections 
- Revisit from time to time and seek feedback - Revisit from time to time and seek feedback 

Pros: flexible; engaging for participants; easy 
and accessible; leverages interpersonal 
relationships; monetarily inexpensive; 
simultaneous learning and empowerment 

Pros: larger potential reach; more 
encompassing; easy computer-generated 
maps, visuals and network metrics; no 
assumed structure; systematic 

Cons: cannot identify un/disconnected 
individuals; time-consuming; assumes core-
periphery structure; network metrics not as 
easily calculated 

Cons: financial cost and expertise required for 
software; too "formal" or "academic" to be 
engaging for stakeholders; difficult survey 
process 

Table 3.1 Summaries of two recognized approaches to network mapping. Both essentially start 
with the same step of identifying goals and boundaries for the network and mapping exercise. 
From there, participatory (Lang 2019) and software-based (Goetz et al., 2017) approaches 
diverge slightly before they both end with a sharing and discussion process.  

  

 Both approaches to network mapping start similarly. Establishing boundaries, goals and 

the purpose of the network and its map is a critical first step (Chaudhary & Radhakishna, 2018). 
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Often these are dictated by an apparent need or observed problem like the case with SKC: local 

direct-market organic farmers were having trouble finding varieties that grew well on their farms 

and satisfied the high-quality expectations of their restaurant, CSA, and farmers market 

customers. Alternatively, the problem could be water pollution caused by agricultural runoff, or 

rural economic recovery post-COVID-19. There may be other purposes that guide network 

mapping goals such as examining information sharing patterns amongst Hmong farmers in 

Wisconsin. In any case, the initial step should involve identifying what types of people and 

relationships are the focus in the context of the problem (Chaudhary & Radhakishna, 2018).  

 From there, the two mapping approaches follow slightly different trajectories. In 

participatory network mapping, the target stakeholders identified in step one are brought together 

and introduced to the project. One disadvantage to participatory mapping is that it assumes a 

core-periphery structure (Lang, 2019) even though in reality that’s not always true. Nonetheless, 

participants collaboratively assign what individuals or roles are core members and which are 

periphery. From there, participants create their own maps, usually color-coded, that show the 

people and relationships relevant to the problem from their perspective. These can be compiled 

and layered together over time and with different groups to produce a more complete picture 

(Lang, 2019). The process can also be a learning exercise and a way to empower participants in 

and of itself. 

 Software-based mapping however follows slightly different procedures. After the purpose 

and goals are established in step one, they should be used to generate a list of network members 

(Goetz et al., 2017). In the case of farmers, agricultural census and Extension records can be 

helpful (Chaudhary & Radhakishna, 2018). Looking for and working with other groups nearby 

can also be a viable option. In setting up SKC, Associate Professor Julie Dawson tapped heavily 
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into listservs and contacts at FairShare CSA Coalition (Madison, WI) to find interested farmer 

participants. In recent years, SKC has also engaged with chefs in Wisconsin’s Culinary Ladies 

Collective to continue expanding its reach throughout the state.  

 Once a list of members is generated, survey(s) and/or interviews are conducted to 

uncover relevant relationships that weave people into a network. While seemingly 

straightforward, creating a survey to assess social network relationships is deceptively hard and 

care should be taken to construct the survey tool appropriately. For more discussion and advice 

on survey creation see Goetz et al. (2017). Once the survey and interview process are complete, 

data is entered and analyzed with one of many potential software programs to create statistics 

and visuals. 

 Both participatory and software-based mapping approaches also end with the same 

process of sharing and discussing the results (Goetz et al., 2017; Lang, 2019). Just by itself this 

can be an informative process where people get new ideas about potential collaborations, learn 

who to contact with questions, and talk about the next steps toward solving the problem. Some 

post-mapping discussion and reflection questions adapted from Lang (2019) are shown in Table 

3.2. Importantly, while the two mapping techniques differ, they should not be considered 

mutually exclusive nor in opposition to each another. Surely the two approaches can complement 

one another in new applications for organic farming and agriculture broadly. 
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Post-Mapping Discussion/Reflection Questions 

- Does network include all individuals, groups, and organizations needed for success? 

- Are the right connections in place? If so, are they strong or weak? 

- Who is not connected that should be? Why might that be? 

- Are any key connections missing? How can they be connected? 

- Where are the gaps? What impact is that having? 

- Who is actively engaged? Which members are making a difference? 

-Who is playing a leadership role? Who is not but should be? 

-Who are the experts in process? In planning? In practice? 

- Who are the mentors that others seek out for advice? 

- Who are the innovators? Are ideas shared and acted upon? 

- Are there collaborative alliances? Should there be? 

Table 3.2 Suggestions for discussion/reflection questions following mapping of a network. 
These can help guide the collective next steps in addressing the established problem and act in 
individual learning. Adapted from Lang (2019). 

   

 The end-process of sharing and discussing results is critical to the sustained impact of 

networks in Extension and research as is the continued re-assessment of impacts and 

relationships (Goetz et al., 2017; Shaw, 2010). SKC has used surveys every few years to evaluate 

its performance and seek ways to improve. The most recent survey had some insightful feedback 

from farmers on perceived gaps within SKC’s network. One respondent said they would like to 

see “resources/networking for people not farming in Madison area,” another echoed similar 
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challenges of attending any off-farm events in Madison, and a third farmer requested more “on-

farm visits from researchers.” Perhaps as SKC has grown, the increasing number of farmers 

outside Madison’s geographic area are feeling left out. This makes sense since time and labor 

commitments for communication and logistics increase as the network grows especially when 

the lab at UW-Madison still serves as a centralized hub. Mapping the SKC network could help 

pinpoint ideal locations to focus on for new field days or outreach events. With the uncertainty of 

a new post-COVID-19 normal, SKC and other participatory networks will also have to be 

creative in coming up with solutions to farmer’s feedback especially in their efforts to continue 

evaluating flavor and sensory qualities in vegetable varieties. If SKC researchers can do more 

farm visits, then perhaps filming farmers and/or their on-farm trials might be a possibility. 

Footage from different areas could be combined, edited, and distributed to show growers 

participating and highlight results. This would address farmer requests for more visits, portray 

farmers as leaders in their communities, and engage with farmers outside the Madison area who 

may feel forgotten. To evaluate flavor without public or crew tastings that violate COVID-19 

restrictions, there may be potential for farms to do more on-farm sensory evaluations with their 

crew or maybe even CSA members. In any case, sharing and discussing results as well as 

seeking stakeholder feedback on their network participation has always been and will continue to 

be an integral part of SKC. The same should be true for Extension agents and researchers 

looking to incorporate network-based tools and perspectives into their work.  

 

Conclusion 

 Today’s agricultural landscape is unlike any before, and new normals are on the horizon. 

Farmers and ranchers (especially organic) need relevant and meaningful partners to ensure their 
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success in the future, so Land Grant universities and Extension must step up to the plate. The 

history of ignoring farmers as experts needs to change as does the view that farmers are passive 

recipients of knowledge. Extension must correct its own shortcomings by addressing farmer 

needs outside technology and the bio-physical aspects of farming. The time has come for Land 

Grant universities and their Extension systems to focus on the learning process and facilitate 

capacity building and leadership among farmers and farming communities. While more 

Extension workers are awakening to the power and possibilities afforded by network-based 

strategies and tools, their application in agricultural research, education, and outreach has been 

slow (Chaudhary & Radhakishna, 2018) 

 In truth no paper nor class will ever be able to provide a blueprint for this work, but 

network tools and concepts can provide important foundations and launching points for ideas. 

For some, this may require a reimagining of Extension and its role. To navigate the variety of 

worldviews, practices and farming philosophies, Extension agents cannot think of themselves as 

simply conduits of information; they must be willing to learn from the farmers and communities 

they serve and act as enablers of network relationships. Their actions must become meaningful 

and purposeful in the quest to help farmers address the complex and multifarious problems they 

deal with daily. Extension agents and researchers familiarizing themselves with network-based 

strategies and concepts is the beginning to this process of change. 
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Appendix A – Crew Survey Example 

The following is a series of screenshots from SKC’s crew tasting survey built under Qualtrics 
software, version 2019.6 (SAP, Provo, UT). First, tasters are asked for their name and whether or 
not they attended the pre-season training activity in June 2019. 

 

 

 

Next, tasters are asked to give a hedonic score from 1 – 5 for each variety’s appearance. They are 
instructed to consider both the whole, uncut sample, which is similar to what might be 
encountered at a market, and the cut sample. Notice that variety names are replaced by random 
3-letter codes, and any well-known acronyms such as ‘CIA’ or ‘FBI’ are avoided. 
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Tasters are then asked to taste each variety one by one. The picture below shows an example for 
one variety, and varieties are presented in a random order. Once the taster completes this page 
and presses the ‘Next’ button, the next variety appears. Texture is rated hedonically from 1 – 5, 
while the other traits are intensity scales. This example includes umami as a trait, but this is only 
used in SKC evaluations of tomatoes and potatoes. Previously, spiciness (in hot peppers) and 
earthiness (in beets) have also been included for evaluation. Additionally, an open-ended 
evaluation is included so tasters can record any perceived unique attributes or descriptors. 
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Finally, tasters are asked to taste each variety again and give a hedonic score from 1 – 5 for their 
overall liking (ie: preference) for each variety.  

118



 

 

 

 

 

 

 

 

 

119



 

Appendix B – Pre-season Crew Training Activity 
 

Training Activity                          

 
Directions Identify each set as bitter, umami, salt, sour or sweet. Label the solution levels 
within each set as level I, II, or III, (I being the weakest and III being the strongest). Cups and 
sets should be labeled; if not, please inform the facilitator.                
 
 

Tastes Sour 
Sweet 
Salt 
Bitter 
Umami 

Concentration levels  I = Weakest  
II = Medium 
III = Strongest  

 
 
 

Name _____________________     Circle one:       Water   Tomato  
 
 

   

        SET 1                  SET 2   SET 3                 SET 4           SET 5  

T
a

st
e

  
 

T
a

st
e
  

 

T
a

st
e
  

 

T
a

st
e
  

 

T
a

st
e
  

Cup Conc. 
Level 

Cup Conc. 
Level 

Cup Conc. 
Level 

Cup Conc. 
Level 

Cup Conc. 
Level 

A  A  A  A  A  

B  B  B  B  B  

C  C  C  C  C  
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Appendix C – Summary of crops, market classes, tasting sets and internal checks 

 

This table shows a breakdown of each crop and its market classes. The ‘#Tastings’ column refers 
to how many tasting sets were created from all the trial entries, while the ‘#internalChecks’ 
column tells how many internal checks were evaluated between all tasting sets. 

Project Crop Market SubMarket #Tastings #internalChecks 

CIOA Carrot Orange   3 1 

    Non-Orange Purple 1 1 

      Red 2 0 

      White Yellow 1 0 

SKC Carrot Orange   1 1 

    Non-Orange Red 1 2 

      Purple 1 2 

  Cucumber Asian   1 2 

    Pickling Raw 2 2 

    Mini   1 2 

  Lettuce Butterhead   1 0 

    LittleGem   1 1 

    OneCut Green 2 1 

      Red 4 2 

  Melon Orange-Flesh   2 2 

    Galia   1 1 

  Pepper Bell 
Orange 
Yellow 

1 1 

      Red 2 2 

    Corno di Toro 
Orange 
Yellow 

1 1 

      Red 2 3 

  Potato Red   1 0 

    Yellow   1 0 

    Multi-Color   1 0 

  Tomato Breeding   4 0 

    Cherry   1 1 

    Cocktail   1 0 

    Slicer 
Orange 
Yellow 

1 0 

      Red 5 4 

      Pink 2 1 

  WinterSquash Butternut Large 1 1 

      Small 1 1 

    Maxima BlueGreen 1 1 

      PinkRed 1 1 
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Characteristic SS MS F Pr(>F) Characteristic SS MS F Pr(>F)
Appearance 65 3.8 6.0 <0.001 Appearance 19 3.7 4.2 0.0024
Texture 11 0.64 0.76 0.73 Texture 18 3.6 6.4 <0.001
Sweetness 59 3.5 4.5 <0.001 Sweetness 30 5.9 7.9 <0.001
Acidity 9.6 0.57 1.5 0.13 Acidity 1.0 0.20 0.62 0.69
Harshness 63 3.7 3.9 <0.001 Harshness 5.7 1.1 0.87 0.51
Intensity 19 1.1 1.5 0.13 Intensity 4.2 0.85 1.1 0.38

Overall preference 60 3.5 3.6 <0.001 Overall preference 24 4.7 3.3 0.011

Characteristic SS MS F Pr(>F) Characteristic SS MS F Pr(>F)
Appearance 49 5.5 6.5 <0.001 Appearance 12 2.9 2.1 0.13
Texture 12 1.3 1.8 0.089 Texture 9.5 2.4 2.9 0.058
Sweetness 61 6.8 9.7 <0.001 Sweetness 15 3.7 4.2 0.024
Acidity 3.3 0.36 0.76 0.65 Acidity 0.70 0.18 1.0 0.45
Harshness 74 8.3 7.8 <0.001 Harshness 13 3.1 1.7 0.23
Intensity 21 2.4 1.8 0.086 Intensity 4.5 1.1 1.5 0.25
Overall preference 74 8.2 8.1 <0.001 Overall preference 11 2.8 2.4 0.10

Characteristic SS MS F Pr(>F) Characteristic SS MS F Pr(>F)
Appearance 83 4.1 4.4 <0.001 Appearance 7.9 1.6 1.7 0.15
Texture 41 2.1 3.1 <0.001 Texture 3.1 0.60 1.3 0.28
Sweetness 107 5.3 6.9 <0.001 Sweetness 21 4.2 4.2 0.0031
Acidity 7.7 0.38 0.94 0.54 Acidity 1.5 0.30 0.70 0.65
Harshness 95 4.8 3.8 <0.001 Harshness 4.0 0.80 0.90 0.48
Intensity 33 1.7 1.6 0.059 Intensity 7.5 1.5 2.0 0.090
Overall preference 109 5.5 4.6 <0.001 Overall preference 42 8.3 8.0 <0.001

Characteristic SS MS F Pr(>F) Characteristic SS MS F Pr(>F)
Appearance 11 2.3 2.7 0.045 Appearance 4.8 0.97 0.92 0.49
Texture 3.8 0.8 1.2 0.34 Texture 6.3 1.3 2.1 0.12
Sweetness 8.8 1.8 2.1 0.11 Sweetness 10 2.1 5.4 0.0050
Acidity 0.80 0.16 0.91 0.50 Acidity 0.71 0.14 0.61 0.69
Harshness 12 2.4 3.6 0.017 Harshness 7.4 1.5 1.0 0.42
Intensity 5.1 1.0 1.0 0.44 Intensity 6.8 1.4 2.7 0.052
Overall preference 12 2.3 2.0 0.11 Overall preference 24 4.9 5.8 0.0022

CIOA White+Yellow CarrotsCIOA Red Carrots

Appendix D - ANOVA tables using Satterthwaite's Method to assess Fixed Effect of Variety on Flavor 
Variables

SKC Orange Carrots

SKC Purple CarrotsSKC Red Carrots

CIOA Non-Orange Carrots

CIOA Orange Carrots CIOA Purple Carrots
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Characteristic SS MS F Pr(>F) Characteristic SS MS F Pr(>F)
Appearance 20 1.8 1.9 0.063 Appearance 81 3.5 5.0 <0.001
Texture 11 1.0 1.6 0.14 Texture 14 0.62 0.86 0.65
Sweetness 19 1.8 2.8 0.0095 Sweetness 82 3.6 4.2 <0.001
Acidity 1.6 0.14 0.76 0.68 Acidity 16 0.70 1.6 0.057
Harshness 26 2.4 2.3 0.027 Harshness 81 3.5 3.7 <0.001
Intensity 15 1.3 1.7 0.11 Intensity 32 1.4 1.8 0.022
Overall preference 36 3.3 3.2 0.0033 Overall preference 107 4.6 4.6 <0.001

Characteristic SS MS F Pr(>F) Characteristic SS MS F Pr(>F)
Appearance 61 4.1 4.8 <0.001 Appearance 23 2.1 2.3 0.020
Texture 16 1.0 1.4 0.15 Texture 24 2.2 3.9 <0.001
Sweetness 76 5.1 6.8 <0.001 Sweetness 42 3.8 5.5 <0.001
Acidity 4.1 0.27 0.66 0.81 Acidity 1.9 0.18 0.58 0.84
Harshness 88 5.9 6.0 <0.001 Harshness 14 1.3 0.95 0.50
Intensity 27 1.8 1.4 0.16 Intensity 12 1.1 1.4 0.18
Overall preference 86 5.7 5.4 <0.001 Overall preference 48 4.4 3.3 0.0012

Characteristic SS MS F Pr(>F) Characteristic SS MS F Pr(>F)
Appearance 102 3.2 3.4 <0.001 Appearance 183 3.3 3.9 <0.001
Texture 52 1.6 2.4 <0.001 Texture 66 1.20 1.7 0.0038
Sweetness 133 4.1 5.7 <0.001 Sweetness 216 3.9 5.0 <0.001
Acidity 9.3 0.29 0.79 0.78 Acidity 25 0.45 1.2 0.24
Harshness 122 3.8 3.2 <0.001 Harshness 203 3.6 3.4 <0.001
Intensity 48 1.5 1.5 0.052 Intensity 81 1.5 1.6 0.0071
Overall preference 146 4.6 3.9 <0.001 Overall preference 251 4.5 4.0 <0.001

Characteristic SS MS F Pr(>F) Characteristic SS MS F Pr(>F)
Appearance 17 2.9 4.5 <0.001 Appearance 17 1.5 1.8 0.061
Texture 12 1.9 2.7 0.023 Texture 9.3 0.84 0.97 0.48
Sweetness 10 1.7 1.9 0.099 Sweetness 14 1.3 1.4 0.18
Acidity 1.2 0.19 0.36 0.90 Acidity 9.6 0.87 1.0 0.44
Bitterness 18 3.0 3.7 0.0040 Bitterness 29 2.6 2.2 0.020
Intensity 3.2 0.54 0.66 0.69 Intensity 9.3 0.85 1.1 0.39
Overall preference 15 2.5 2.2 0.054 Overall preference 11 1.0 0.94 0.50

Characteristic SS MS F Pr(>F) Characteristic SS MS F Pr(>F)
Appearance 4.8 1.0 2.2 0.061 Appearance 44 1.8 2.7 <.001
Texture 6.4 1.2 1.6 0.16 Texture 32 1.3 1.6 0.036
Sweetness 5.3 1.1 1.3 0.29 Sweetness 41 1.7 1.9 0.0096
Acidity 2.0 0.39 0.53 0.76 Acidity 17 0.73 0.96 0.52
Bitterness 5.6 1.1 1.1 0.35 Bitterness 50 2.1 2.1 0.0029
Intensity 1.1 0.21 0.27 0.92 Intensity 18 0.74 0.94 0.54
Overall preference 4.8 1.0 1.1 0.39 Overall preference 34 1.4 1.4 0.12

All Cucumbers

All Purple Carrots

All CarrotsAll Non-Orange Carrots

SKC Non-Orange Carrots

Raw Pickling Cucumbers

All Red Carrots

Asian Cucumbers

Mini Cucumbers

All Orange Carrots
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Characteristic SS MS F Pr(>F) Characteristic SS MS F Pr(>F)
Appearance 17 2.9 3.3 0.012 Appearance 9.2 1.5 2.1 0.065
Texture 9.5 1.6 1.6 0.18 Texture 4.9 0.81 1.1 0.38
Sweetness 6.1 1.0 1.3 0.28 Sweetness 1.8 0.30 0.25 0.96
Acidity 1.8 0.29 0.46 0.83 Acidity 5.4 0.89 1.2 0.32
Bitterness 6.1 1.0 2.0 0.10 Bitterness 12 2.0 1.7 0.14
Intensity 5.1 0.84 1.3 0.30 Intensity 2.9 0.48 0.51 0.80
Overall preference 4.7 0.78 0.70 0.65 Overall preference 20 3.4 2.9 0.016

Characteristic SS MS F Pr(>F) Characteristic SS MS F Pr(>F)
Appearance 18 2.2 2.8 0.0070 Appearance 30 2.3 3.2 <0.001
Texture 11 1.4 1.5 0.16 Texture 18 1.4 2.1 0.015
Sweetness 12 1.4 1.3 0.23 Sweetness 6.2 0.48 0.57 0.88
Acidity 1.9 0.24 0.51 0.85 Acidity 6.8 0.52 1.1 0.32
Bitterness 21 2.6 2.6 0.010 Bitterness 31 2.4 2.2 0.012
Intensity 11 1.4 1.5 0.16 Intensity 16 1.2 2.2 0.011
Overall preference 11 1.3 1.0 0.42 Overall preference 26 2.0 2.3 0.0080

Characteristic SS MS F Pr(>F) Characteristic SS MS F Pr(>F)
Appearance 49 2.2 2.8 <0.001 Appearance 75 2.1 2.7 <0.001
Texture 36 1.7 2.0 0.0070 Texture 68 1.9 2.2 <0.001
Sweetness 29 1.3 1.4 0.094 Sweetness 67 1.9 1.9 0.0014
Acidity 8.8 0.40 0.87 0.63 Acidity 17 0.46 0.88 0.67
Bitterness 96 4.3 4.0 <0.001 Bitterness 138 3.8 3.7 <0.001
Intensity 29 1.3 1.8 0.013 Intensity 46 1.3 1.7 0.011
Overall preference 57 2.6 2.5 <0.001 Overall preference 98 2.7 2.5 <0.001

Characteristic SS MS F Pr(>F) Characteristic SS MS F Pr(>F)
Appearance 21 1.6 2.2 0.012 Appearance 0.067 0.033 0.31 0.74
Texture 69 5.3 5.7 <0.001 Texture 16 7.9 11 <0.001
Sweetness 70 5.4 7.0 <0.001 Sweetness 0.067 0.033 0.053 0.95
Acidity 8.1 0.62 1.8 0.056 Acidity 0.067 0.0 0.060 0.94
Bitterness 7.9 0.61 2.1 0.021 Bitterness 0.20 0.10 0.23 0.80
Intensity 72 5.6 9.9 <0.001 Intensity 2.5 1.2 3.0 0.078
Overall preference 90 6.9 6.8 <0.001 Overall preference 2.4 1.2 1.6 0.23

Characteristic SS MS F Pr(>F) Characteristic SS MS F Pr(>F)
Appearance 21 1.3 2.0 0.017 Appearance 15 3.8 4.9 0.0025
Texture 92 5.7 6.4 <0.001 Texture 14 3.4 6.4 <0.001
Sweetness 73 4.6 6.0 <0.001 Sweetness 11 2.8 3.3 0.018
Acidity 8.2 0.51 1.3 0.20 Acidity 1.3 0.32 0.47 0.76
Bitterness 8.4 0.52 1.7 0.062 Bitterness 0.25 0.064 0.16 0.96
Intensity 77 4.8 8.5 <0.001 Intensity 7.6 1.9 3.8 0.011
Overall preference 97 6.1 5.8 <0.001 Overall preference 38 9.4 9.2 <0.001

All One-Cut Lettuce

Butterhead Lettuce

All Lettuce

Little Gem Lettuce

Green One-Cut Lettuce

Galia Melons

All Melons

Orange-Fleshed Melons

Orange+Yellow Bell Peppers

Red One-Cut Lettuce
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Characteristic SS MS F Pr(>F) Characteristic SS MS F Pr(>F)
Appearance 32 2.9 6.2 <0.001 Appearance 1.5 0.39 0.82 0.52
Texture 10 0.94 2.2 0.018 Texture 5.0 1.2 1.5 0.22
Sweetness 21 1.9 2.2 0.018 Sweetness 2.5 0.61 0.85 0.51
Acidity 9.8 0.89 1.3 0.23 Acidity 1.5 0.39 0.55 0.70
Bitterness 13 1.2 2.6 0.0061 Bitterness 0.74 0.19 0.61 0.66
Intensity 4.4 0.40 0.52 0.88 Intensity 0.17 0.042 0.044 1.0
Overall preference 20 1.8 2.5 0.0072 Overall preference 4.1 1.0 1.7 0.19

Characteristic SS MS F Pr(>F) Characteristic SS MS F Pr(>F)
Appearance 28 2.5 5.1 <0.001 Appearance 78 2.4 4.6 <.001
Texture 9.3 0.85 0.52 0.24 Texture 42 1.3 2.3 <.001
Sweetness 5.1 0.46 0.52 0.89 Sweetness 59 1.8 2.0 0.0012
Acidity 11 1.0 1.4 0.20 Acidity 24 0.73 1.1 0.36
Bitterness 7.3 0.66 1.2 0.29 Bitterness 23 0.71 1.5 0.039
Intensity 8.0 0.73 1.4 0.21 Intensity 25 0.75 1.1 0.40
Overall preference 3.8 0.35 0.32 0.98 Overall preference 72 2.2 2.5 <0.001

Characteristic SS MS F Pr(>F) Characteristic SS MS F Pr(>F)
Appearance 8.7 1.7 3.0 0.046 Appearance 1.6 0.40 0.43 0.78
Texture 5.2 1.0 1.0 0.45 Texture 4.4 1.1 0.72 0.59
Sweetness 2.9 0.58 0.70 0.63 Sweetness 3.4 0.86 0.92 0.48
Acidity 2.5 0.50 0.82 0.56 Acidity 1.0 0.26 0.72 0.59
Bitterness 6.0 1.2 1.3 0.33 Bitterness 7.6 1.9 3.3 0.037
Umami 2.2 0.44 0.77 0.59 Umami 1.4 0.34 0.87 0.50
Intensity 8.5 1.7 3.6 0.025 Intensity 3.2 0.80 1.3 0.32
Overall preference 3.2 0.64 0.53 0.75 Overall preference 0.96 0.24 0.16 0.96

Characteristic SS MS F Pr(>F) Characteristic SS MS F Pr(>F)
Appearance 3.7 1.2 1.2 0.37 Appearance 19 1.4 1.4 0.21
Texture 6.0 2.0 2.8 0.10 Texture 21 1.5 1.1 0.40
Sweetness 1.2 0.40 0.70 0.57 Sweetness 8.5 0.61 0.64 0.82
Acidity 2.8 0.92 1.4 0.30 Acidity 8.1 0.58 1.1 0.41
Bitterness 3.5 1.2 2.1 0.17 Bitterness 21 1.5 2.2 0.023
Umami 4.7 1.6 2.3 0.14 Umami 11 0.79 1.4 0.18
Intensity 2.0 0.67 1.2 0.36 Intensity 17 1.2 2.1 0.032
Overall preference 6.0 2.0 2.0 0.18 Overall preference 13 0.89 0.73 0.74

All Sweet Peppers

Multi-Colored Potatoes

Red Potatoes Yellow Potatoes

All Potatoes

Red Bell Peppers

Red Corno di Toro Peppers

Orange+Yellow Corno di Toro Peppers
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Characteristic SS MS F Pr(>F) Characteristic SS MS F Pr(>F)
Appearance 26 1.3 1.5 0.078 Appearance 0.38 0.19 1.4 0.28
Texture 26 1.3 1.3 0.19 Texture 1.5 0.76 1.6 0.25
Sweetness 59 3.0 5.3 <0.001 Sweetness 2.0 1.0 1.3 0.31
Acidity 19 0.94 1.1 0.40 Acidity 0.095 0.048 0.067 0.94
Bitterness 6.3 0.32 0.58 0.92 Bitterness 0.29 0.14 0.56 0.58
Umami 16 0.79 0.92 0.57 Umami 1.2 0.62 1.8 0.21
Intensity 33 1.6 2.2 0.0038 Intensity 1.5 0.76 5.1 0.026
Overall preference 49 2.4 2.2 0.0035 Overall preference 2.6 1.3 3.8 0.054

Characteristic SS MS F Pr(>F) Characteristic SS MS F Pr(>F)
Appearance 11 2.3 4.5 0.0024 Appearance 5.0 1.0 1.2 0.31
Texture 2.8 0.56 0.83 0.54 Texture 3.9 0.78 1.2 0.33
Sweetness 3.8 0.76 1.1 0.36 Sweetness 7.9 1.6 3.3 0.017
Acidity 19 3.8 4.3 0.0033 Acidity 4.6 0.91 1.3 0.30
Bitterness 1.2 0.24 0.85 0.52 Bitterness 1.6 0.32 0.6 0.71
Umami 0.80 0.17 0.26 0.93 Umami 2.9 0.57 0.93 0.48
Intensity 4.7 0.93 1.2 0.34 Intensity 2.9 0.57 1.0 0.43
Overall preference 10 2.1 1.9 0.10 Overall preference 11 2.1 2.3 0.066

Characteristic SS MS F Pr(>F) Characteristic SS MS F Pr(>F)
Appearance 31 2.4 4.1 <0.001 Appearance 10 2.1 2.9 0.015
Texture 11 0.83 1.4 0.17 Texture 10 2.1 2.4 0.042
Sweetness 10 0.80 2.2 0.017 Sweetness 6.6 1.3 1.9 0.091
Acidity 25 1.9 2.3 0.010 Acidity 8.3 1.7 2.7 0.021
Bitterness 4.7 0.36 1.6 0.11 Bitterness 0.90 0.18 0.62 0.69
Umami 15 1.2 1.8 0.051 Umami 8.1 1.6 2.4 0.038
Intensity 12 0.89 1.7 0.079 Intensity 4.9 1.0 1.5 0.18
Overall preference 13 1.0 1.1 0.36 Overall preference 10 2.0 2.4 0.039

Characteristic SS MS F Pr(>F) Characteristic SS MS F Pr(>F)
Appearance 8.6 2.9 4.0 0.022 Appearance 3.3 0.83 1.3 0.30
Texture 1.8 0.61 0.74 0.54 Texture 13 3.3 4.2 0.0064
Sweetness 2.6 0.88 2.7 0.074 Sweetness 3.8 0.95 0.91 0.47
Acidity 2.3 0.75 1.4 0.27 Acidity 7.9 2.0 2.7 0.045
Bitterness 4.6 1.5 6.6 0.0025 Bitterness 36 9.1 20 <0.001
Umami 4.1 1.4 3.7 0.029 Umami 14 3.5 5.2 0.0020
Intensity 1.4 0.46 1.0 0.41 Intensity 12 2.9 4.0 0.0086
Overall preference 8.6 2.9 2.7 0.063 Overall preference 12 3.1 3.5 0.017

Cherry Tomatoes (Field)

Red Tomatoes (Field)

Cocktail Tomatoes (Field)

Red Tomatoes (High Tunnel)

Orange+Yellow Tomatoes (Field)

Pink Tomatoes (High Tunnel)Pink Tomatoes (Field)

Breeding Tomatoes (High Tunnel)
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Characteristic SS MS F Pr(>F) Characteristic SS MS F Pr(>F)
Appearance 152 1.7 2.5 <.001 Appearance 27 4.5 5.8 <0.001
Texture 197 2.2 2.8 <.001 Texture 27 4.5 5.6 <0.001
Sweetness 224 2.5 4.1 <.001 Sweetness 15 2.4 3.7 0.0025
Acidity 133 1.5 2.1 <.001 Acidity 2.8 0.46 1.1 0.34
Bitterness 76 0.85 2.2 <.001 Bitterness 4.4 0.73 1.9 0.086

Umami 92 1.0 1.5 0.0040 Intensity 14 2.3 4.0 0.0013
Intensity 152 1.7 2.7 <.001 Overall preference 29 4.8 5.1 <0.001
Overall preference 295 3.3 3.4 <.001

Characteristic SS MS F Pr(>F) Characteristic SS MS F Pr(>F)
Appearance 19 3.2 5.0 <0.001 Appearance 49 3.7 5.3 <0.001
Texture 44 7.3 9.3 <0.001 Texture 71 5.5 7.0 <0.001
Sweetness 46 7.6 10 <0.001 Sweetness 61 4.7 6.7 <0.001
Acidity 3.6 0.60 1.4 0.22 Acidity 6.5 0.50 1.2 0.27
Bitterness 5.8 1.0 2.2 0.055 Bitterness 10 0.80 2.0 0.027
Intensity 37 6.1 13 <0.001 Intensity 51 3.9 7.2 <0.001
Overall preference 29 4.8 5.7 <0.001 Overall preference 61 4.7 5.0 <0.001

Characteristic SS MS F Pr(>F) Characteristic SS MS F Pr(>F)
Appearance 19 3.8 3.2 0.023 Appearance 16 2.7 5.5 0.023
Texture 30 6.0 14 <0.001 Texture 10 1.7 1.6 0.18
Sweetness 32 6.4 11 <0.001 Sweetness 24 4.0 7.3 <0.001
Acidity 0.27 0.053 0.10 0.99 Acidity 0.80 0.13 0.26 0.95
Bitterness 1.6 0.32 0.73 0.61 Bitterness 3.9 0.66 0.83 0.56
Intensity 15 3.1 6.5 <0.001 Intensity 25 4.2 6.3 <0.001
Overall preference 42 8.4 22 <0.001 Overall preference 22 3.7 4.0 0.0010

Characteristic SS MS F Pr(>F)
Appearance 35 3.0 3.6 <0.001
Texture 47 3.9 5.0 <0.001
Sweetness 59 5.0 8.7 <0.001
Acidity 2.4 0.20 0.37 0.97
Bitterness 6.8 0.57 0.96 0.50
Intensity 47 3.9 6.6 <0.001
Overall preference 72 6.0 7.8 <0.001

All Tomatoes

Pink/Red maxima  Squash

All maxima Squash

Blue/Green maxima Squash

All Butternut SquashMini Butternut Squash

Large Butternut Squash
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Variety emmean SE lowerCI upperCI group
OSAPopulation1 4.3 0.30 3.7 4.9 a        
Nb8524 4.3 0.30 3.7 4.9 a        
Brasilia 4.1 0.37 3.4 4.9 a b    
Negovia 4.0 0.30 3.4 4.6 a b    
Adana 4.0 0.30 3.4 4.6 a b    
Napoli 3.9 0.29 3.3 4.5 a b    
U8277 3.8 0.37 3.1 4.5 a b    
Dolciva 3.8 0.30 3.2 4.4 a b    
Bolero2 3.5 0.30 2.9 4.1 a b    
Nb8483 3.6 0.40 2.8 4.4 a b c
U9237 3.5 0.37 2.7 4.2 a b c
Nb3271 3.4 0.40 2.6 4.2 a b c
F8874 3.4 0.40 2.6 4.2 a b c
F5367 3.3 0.30 2.7 3.9 a b c
Nb8542 3.1 0.37 2.4 3.9 a b c
OSAPopulation2 2.9 0.30 2.3 3.5    b c
Bolero1 2.8 0.32 2.2 3.5    b c
F3513 2.8 0.30 2.2 3.4    b c
Nb2159 2.7 0.30 2.1 3.2    b c
U8264 2.6 0.37 1.9 3.4    b c
U8272 2.4 0.40 1.6 3.2    b c
F9241 2.4 0.40 1.6 3.2    b c
UberlandiaDerivative 2.1 0.30 1.5 2.7        c
D1131 1.8 0.40 1.0 2.6        c

Appendix E - Significance Groupings after Pairwise Comparisons where Fixed Effect of 
Variety was Significant

Orange Carrots - Appearance

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10
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Variety emmean SE lowerCI upperCI group
F3513 4.2 0.33 3.6 4.9 a                   
F5367 3.8 0.33 3.1 4.4 a b               
Bolero2 3.6 0.32 3.0 4.2 a b c           
Bolero1 3.5 0.32 2.9 4.1 a b c           
F9241 3.6 0.45 2.7 4.5 a b c d       
Nb2159 3.2 0.33 2.6 3.9 a b c d e   
Nb8524 3.1 0.33 2.5 3.8 a b c d e f
Nb8542 3.1 0.41 2.3 3.9 a b c d e f
OSAPopulation1 3.0 0.33 2.3 3.7 a b c d e f
F8874 2.8 0.45 1.9 3.7 a b c d e f
OSAPopulation2 2.8 0.33 2.1 3.4 a b c d e f
U9237 2.7 0.41 1.9 3.5 a b c d e f
Brasilia 2.4 0.41 1.6 3.2 a b c d e f
U8277 2.4 0.41 1.6 3.2 a b c d e f
U8264 2.4 0.41 1.6 3.2 a b c d e f
Dolciva 2.7 0.32 2.1 3.3    b c d e f
Negovia 2.6 0.32 2.0 3.2    b c d e f
Adana 2.5 0.32 1.9 3.1    b c d e f
U8272 2.0 0.45 1.1 2.9    b c d e f
Nb8483 1.8 0.45 0.9 2.7        c d e f
Uberlandia derivative 2.0 0.33 1.3 2.7           d e f
Napoli 1.9 0.32 1.3 2.5           d e f
Nb3271 1.4 0.45 0.5 2.3               e f
D1131 1.2 0.45 0.3 2.1                  f

     -    Significance level for differences (alpha) = 0.10

Orange Carrots - Sweetness

     -   Upper and lower limits for 95% confidence interval
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Variety emmean SE lowerCI upperCI group
Uberlandia derivative 4.2 0.33 3.6 4.9 a            
D1131 4.1 0.45 3.2 4.9 a b        
OSAPopulation1 3.6 0.33 2.9 4.2 a b c    
Nb3271 3.1 0.45 2.2 3.9 a b c d
OSAPopulation2 2.9 0.33 2.2 3.6 a b c d
U9237 2.9 0.41 2.0 3.7 a b c d
Nb2159 2.7 0.33 2.0 3.3 a b c d
U8272 2.5 0.45 1.6 3.3 a b c d
Nb8524 2.5 0.33 1.8 3.1     b c d
Negovia 2.4 0.32 1.8 3.0     b c d
U8277 2.4 0.41 1.5 3.2     b c d
Nb8542 2.4 0.41 1.5 3.2     b c d
F5367 2.4 0.33 1.7 3.0     b c d
Napoli 2.3 0.32 1.7 2.9     b c d
F9241 2.3 0.45 1.4 3.1     b c d
Bolero2 2.2 0.32 1.6 2.8     b c d
U8264 2.2 0.41 1.4 3.0     b c d
Brasilia 2.2 0.41 1.4 3.0     b c d
Dolciva 2.1 0.32 1.5 2.7         c d
Nb8483 1.9 0.45 1.0 2.7         c d
F8874 1.9 0.45 1.0 2.7         c d
Bolero1 2.0 0.32 1.4 2.6            d
Adana 1.6 0.32 1.0 2.2            d
F3513 1.6 0.33 0.9 2.2            d

Orange Carrots - Harshness

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10
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Variety emmean SE lowerCI upperCI group
Bolero1 4.5 0.32 3.9 5.0 a           
Bolero2 3.6 0.32 3.0 4.2 a b       
Nb2159 3.6 0.34 2.9 4.2 a b       
F3513 3.6 0.34 2.9 4.2 a b       
U8264 3.4 0.46 2.5 4.3 a b c    
Nb8542 3.2 0.46 2.3 4.1 a b c d
U9237 3.2 0.46 2.3 4.1 a b c d
Brasilia 3.2 0.46 2.3 4.1 a b c d
OSAPopulation2 3.0 0.34 2.3 3.7 a b c d
F5367 3.0 0.34 2.3 3.7 a b c d
F9241 3.0 0.51 2.0 4.0 a b c d
Negovia 3.0 0.32 2.4 3.6 a b c d
F8874 2.5 0.51 1.5 3.5 a b c d
Adana 2.8 0.32 2.2 3.4     b c d 
OSAPopulation1 2.8 0.34 2.1 3.5     b c d 
Dolciva 2.7 0.32 2.1 3.3     b c d 
Nb8524 2.1 0.34 1.4 2.8     b c d 
Uberlandia derivative 2.0 0.34 1.3 2.7     b c d 
U8277 2.0 0.46 1.1 2.9     b c d 
Nb3271 2.0 0.51 1.0 3.0     b c d 
Napoli 1.8 0.32 1.2 2.4       c d
Nb8483 1.3 0.51 0.2 2.3       c d
D1131 1.3 0.51 0.2 2.3       c d
U8272 1.0 0.51 0.0 2.0         d

Orange Carrots - Overall Preference

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10
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Variety emmean SE lowerCI upperCI group Variety emmean SE lowerCI upperCI group
P8390_2 4.1 0.29 3.5 4.6   a        P0114 4.3 0.5 3.2 5.0 a b c          
P8390_1 4.0 0.29 3.4 4.6  a b    PR7300 4.1 0.3 3.6 4.7 a        d      
PurpleHaze1 4.3 0.54 3.2 5.0 a b c P9806 3.9 0.3 3.3 4.4 a b    d e   
PurpleHaze2 4.0 0.54 2.9 5.0 a b c P8390_1 3.9 0.3 3.3 4.4 a b    d e   
PurpleElite1 3.8 0.54 2.7 4.8 a b c P8390_2 3.8 0.3 3.2 4.4 a b    d e   
PR7300 3.6 0.29 3.0 4.1 a b c PurpleElite2 3.5 0.5 2.4 4.6 a b c d e f
P9806 3.6 0.29 3.0 4.1 a b c PurpleElite1 3.5 0.5 2.4 4.6 a b c d e f
PurpleElite2 3.3 0.54 2.2 4.3 a b c PurpleHaze2 3.5 0.5 2.4 4.6 a b c d e f
P0114 3.3 0.54 2.2 4.3 a b c PurpleHaze1 3.3 0.5 2.2 4.3 a b c d e f
P6423 3.0 0.54 1.9 4.1 a b c P9804 3.2 0.3 2.7 3.8      b c    e f  
PR5100 2.9 0.29 2.4 3.5    b c PR5100 2.8 0.3 2.2 3.4           c      f   
P9804 2.9 0.29 2.3 3.4       c P6423 2.5 0.5 1.4 3.6          d e f

Variety emmean SE lowerCI upperCI group Variety emmean SE lowerCI upperCI group
P0114 4.3 0.47 3.3 5.0 a          P0114 4.3 0.6 3.1 5.0  a    
PR7300 3.4 0.25 2.9 3.9  a b       P8390_2 3.4 0.3 2.7 4.0  a    
PurpleElite2 3.0 0.47 2.1 3.9 a b c d P8390_1 3.1 0.3 2.5 3.7  a    
PurpleElite1 2.8 0.47 1.8 3.7 a b c d PurpleElite1 3.3 0.6 2.1 4.4 a b
PurpleHaze2 2.5 0.47 1.6 3.4 a b c d P9806 2.9 0.3 2.2 3.5 a b
PurpleHaze1 2.5 0.47 1.6 3.4 a b c d PurpleHaze2 2.8 0.6 1.6 3.9 a b
P9806 2.5 0.25 2.0 3.0 b c PurpleHaze1 2.8 0.6 1.6 3.9 a b
P6423 2.3 0.47 1.3 3.2     b c d PR7300 2.7 0.3 2.1 3.3 a b
P8390_1 2.4 0.25 1.9 2.9      c  P9804 2.4 0.3 1.7 3.0 a b
P8390_2 2.4 0.25 1.9 2.9     c PurpleElite2 2.0 0.6 0.8 3.2 a b
P9804 2.1 0.25 1.6 2.6         c d  PR5100 1.7 0.3 1.1 2.3     b 
PR5100 1.4 0.25 0.9 1.9            d  P6423 1.0 0.6 1.0 2.2     b 

Variety emmean SE lowerCI upperCI group Variety emmean SE lowerCI upperCI group
R6220 4.1 0.26 3.6 4.6   a                R6637 4.0 0.40 3.3 4.8       a                    
R7286 4.1 0.44 3.3 5.0   a b            R6304 3.8 0.40 3.1 4.6       a                    
R5646 3.6 0.26 3.1 4.1 a b c        R6220 3.3 0.2 2.8 3.7      a b                
R6304 3.8 0.44 2.9 4.6 a b c d    RedSamurai1 3.6 0.4 2.8 4.4     a b c            
R7284 3.3 0.26 2.8 3.8 a b c d    R5647 3.4 0.4 2.6 4.2    a b c d        
RedSamurai1 3.6 0.44 2.7 4.5 a b c d e R8201 3.0 0.2 2.5 3.5    a b c d        
RedSamurai2 3.4 0.44 2.5 4.3 a b c d e RedSamurai2 3.2 0.4 2.4 4.0   a b c d e    
R6636 3.4 0.44 2.5 4.3 a b c d e AtomicRed1 3.2 0.4 2.4 4.0   a b c d e    
R5647 3.4 0.44 2.5 4.3 a b c d e R7286 2.6 0.40 1.9 3.4 a b c d e f
R4294 3.1 0.26 2.6 3.6 a b c d e AtomicRed2 2.6 0.4 1.8 3.4 a b c d e f
AtomicRed2 2.8 0.44 1.9 3.7 a b c d e R6636 2.0 0.4 1.2 2.8     b c d e f
R6637 2.8 0.44 1.9 3.6 a b c d e R5646 2.1 0.2 1.7 2.6         c d e f
R7361 2.4 0.44 1.5 3.2     b c d e R7361 1.6 0.40 0.9 2.4             d e f
R7294 2.2 0.44 1.3 3.0         c d e  R7294 1.6 0.40 0.9 2.4             d e f
AtomicRed1 1.8 0.44 0.9 2.7             d e  R7284 1.7 0.2 1.2 2.2                 e f
R8201 2.1 0.26 1.6 2.6                 e   R4294 1.7 0.2 1.2 2.1                     f

     -    Significance level for differences (alpha) = 0.10

Purple Carrots - Appearance

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10

Purple Carrots - Texture

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10

Purple Carrots - Sweetness

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10

Purple Carrots - Overall Preference

     -   Upper and lower limits for 95% confidence interval

Red Carrots - Appearance

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10

Red Carrots - Sweetness

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10
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Variety emmean SE lowerCI upperCI group Variety emmean SE lowerCI upperCI group
R7361 4.3 0.48 3.4 5.0 a        R6637 4.5 0.5 3.5 5.0 a                
R4294 3.7 0.28 3.1 4.2 a        R6220 3.8 0.3 3.2 4.4 a b            
R6636 3.8 0.49 2.8 4.8 a b    R6304 4.1 0.5 3.1 5.0 a b c        
AtomicRed2 3.8 0.49 2.8 4.8 a b    R5646 3.1 0.3 2.5 3.6 a b c d    
R7284 3.3 0.28 2.8 3.9 a b    RedSamurai2 3.4 0.5 2.4 4.4 a b c d e
AtomicRed1 3.2 0.49 2.2 4.2 a b c R5647 3.2 0.5 2.2 4.2 a b c d e
R8201 2.7 0.28 2.1 3.2 a b c RedSamurai1 3.0 0.5 2.0 4.0 a b c d e
RedSamurai2 2.4 0.49 1.4 3.4 a b c R8201 2.9 0.3 2.4 3.5 a b c d e
RedSamurai1 2.4 0.49 1.4 3.4 a b c AtomicRed1 2.2 0.5 1.2 3.2     b c d e
R5647 2.4 0.49 1.4 3.4 a b c R7286 2.1 0.5 1.1 3.1     b c d e
R5646 2.3 0.28 1.8 2.9     b c AtomicRed2 2.0 0.5 1.0 3.0     b c d e
R7286 1.7 0.48 0.8 2.7     b c R7284 2.4 0.3 1.8 3.0         c d e
R6220 1.8 0.28 1.2 2.4         c R6636 1.8 0.5 0.8 2.8             d e
R7294 1.5 0.48 0.6 2.5         c R7294 1.7 0.5 0.7 2.7             d e
R6637 1.3 0.48 0.4 2.3         c R7361 1.5 0.5 0.5 2.5             d e
R6304 1.3 0.48 0.4 2.3         c R4294 1.8 0.3 1.2 2.4                 e

     -    Significance level for differences (alpha) = 0.10

Red Carrots - Harshness

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10

Red Carrots - Overall Preference

     -   Upper and lower limits for 95% confidence interval
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Variety emmean SE lowerCI upperCI group Variety emmean SE lowerCI upperCI group
Nokya 4.3 0.30 3.7 4.9 a       TastyJade 4.1 0.31 3.5 4.7 a    
TastyJade 4.2 0.30 3.6 4.8 a b   Nokya 3.6 0.31 3.0 4.3 a b
TastyGreen1 3.8 0.30 3.2 4.4 a b c TastyGreen2 3.4 0.31 2.7 4.0 a b
TastyGreen2 3.6 0.30 3.0 4.2 a b c TastyGreen1 3.4 0.31 2.7 4.0 a b
Suyo1 3.3 0.30 2.7 3.9    b c Suyo2 3.3 0.31 2.7 3.9 a b
Suyo2 3.1 0.30 2.5 3.7        c Suyo1 3.2 0.31 2.6 3.8 a b
YamatoSanjaku 3.0 0.30 2.4 3.6        c YamatoSanjaku 2.7 0.31 2.1 3.4     b

Variety emmean SE lowerCI upperCI group Variety emmean SE lowerCI upperCI group
YamatoSanjaku 2.9 0.29 2.3 3.5 a     Nokya 3.4 0.34 2.7 4.0 a    
TastyJade 1.7 0.29 1.2 2.3 b TastyGreen2 3.2 0.34 2.5 3.9 a    
TastyGreen2 1.6 0.29 1.1 2.2 b TastyGreen1 3.0 0.34 2.3 3.7 a b
TastyGreen1 1.6 0.29 1.0 2.1 b Suyo2 2.9 0.34 2.2 3.6 a b
Suyo1 1.6 0.29 1.0 2.1 b TastyJade 2.8 0.34 2.2 3.5 a b
Nokya 1.5 0.29 0.9 2.0 b Suyo1 2.6 0.34 1.9 3.2 a b
Suyo2 1.5 0.29 0.9 2.0 b YamatoSanjaku 1.9 0.34 1.2 2.6     b

Variety emmean SE lowerCI upperCI group Variety emmean SE lowerCI upperCI group
Excelsior 4.3 0.39 3.5 5.1 a    GY14 2.6 0.3 2.0 3.3 a    
Amour 4.2 0.39 3.4 4.9 a b GY14DM1 2.4 0.3 1.8 3.0 a b
Bushy 4.1 0.37 3.3 4.8 a b Bushy 2.1 0.4 1.4 2.9 a b
Bushy1 4.0 0.45 3.1 4.9 a b GY14DM3 1.8 0.3 1.2 2.5 a b
Artist2 3.8 0.39 3.0 4.6 a b GY14DM2 1.8 0.3 1.2 2.5 a b
Bushy2 3.7 0.47 2.8 4.7 a b Bushy1 1.8 0.5 0.8 2.7 a b
Artist1 3.7 0.39 2.9 4.4 a b Bushy2 1.7 0.5 0.7 2.8 a b
GY14DM2 3.7 0.32 3.0 4.3 a b Artist1 1.6 0.4 0.8 2.4 a b
GY14DM1 3.6 0.31 2.9 4.2 a b Excelsior 1.4 0.4 0.6 2.2 a b
GY14DM3 3.4 0.31 2.7 4.0 a b Artist2 1.4 0.4 0.6 2.2 a b
GherKing 3.3 0.39 2.5 4.1 a b GherKing 1.0 0.4 0.2 1.8     b
GY14 3.0 0.31 2.4 3.6     b Amour 1.0 0.4 0.2 1.8     b

Variety emmean SE lowerCI upperCI group
Manny2 4.3 0.25 3.8 4.8 a    
Yildo1 4.1 0.25 3.6 4.6 a b
Manny1 3.9 0.25 3.3 4.4 a b
WI7204 3.8 0.25 3.3 4.3 a b
Yildo2 3.6 0.25 3.1 4.2 a b
WI7204DM2 3.6 0.25 3.1 4.1     b

Mini Cucumbers - Appearance

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10

Raw Pickling Cucumbers - Appearance

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10

Raw Pickling Cucumbers - Bitterness

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10

Asian Cucumbers - Bitterness

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10

Asian Cucumbers - Overall Preference

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10

Asian Cucumbers - Appearance

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10

Asian Cucumbers - Texture

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10
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Variety emmean SE lowerCI upperCI group Variety emmean SE lowerCI upperCI group
Alkindus 4.3 0.38 3.6 5.0 a    PomegranateCrunch 4.2 0.26 3.7 4.7 a    
Cindy 4.2 0.36 3.4 4.9 a    Pandero 3.9 0.26 3.4 4.4 a b
Australe 3.8 0.38 3.1 4.6 a b IreneGreenGem 3.8 0.26 3.3 4.3 a b
Lovelock 3.7 0.38 2.9 4.5 a b RubyZoisite 3.5 0.26 2.9 4.0 a b
CrispAsIce 3.6 0.42 2.7 4.5 a b LittleGemPearl 3.5 0.26 2.9 4.0 a b
Joker 3.0 0.38 2.2 3.8 a b Newham1 3.4 0.26 2.8 3.9 a b
ManoaLeopard 2.3 0.38 1.6 3.1     b Newham2 3.1 0.26 2.6 3.6     b

Variety emmean SE lowerCI upperCI group Variety emmean SE lowerCI upperCI group
IreneGreenGem 3.9 0.33 3.3 4.6 a    SalanovaGreenButter 4.3 0.26 3.8 4.8 a    
RubyZoisite 3.6 0.33 2.9 4.2 a b EazyleafHampton 3.7 0.25 3.2 4.2 a b
Pandero 3.2 0.33 2.5 3.8 a b SalanovaGreenOakleaf1 3.6 0.30 3.0 4.2 a b
PomegranateCrunch 2.6 0.33 2.0 3.3 a b SalanovaGreenSweetCrisp 3.6 0.25 3.1 4.1 a b
Newham2 2.6 0.33 2.0 3.3 a b EazyleafEzrilla 3.3 0.25 2.8 3.8     b
LittleGemPearl 2.6 0.33 1.9 3.2    b SalanovaGreenOakleaf2 3.2 0.31 2.6 3.9     b
Newham1 2.6 0.33 1.9 3.2    b SalanovaGreenIncised 3.2 0.25 2.7 3.7     b

EazyleafEztron 3.2 0.25 2.7 3.7     b

Variety emmean SE lowerCI upperCI group Variety emmean SE lowerCI upperCI group
SalanovaGreenIncised 3.1 0.27 2.6 3.6 a    SalanovaRedButter 4.4 0.23 4.0 4.9 a    
SalanovaGreenOakleaf2 2.6 0.33 1.9 3.2 a b SalanovaRedIncised1 4.2 0.35 3.5 4.9 a b
EazyleafHampton 2.5 0.27 2.0 3.1 a b EazyleafBurgandy1 4.0 0.28 3.5 4.6 a b
SalanovaGreenSweetCrisp 2.5 0.27 1.9 3.0 a b EazyleafStanford 3.7 0.28 3.2 4.3 a b
EazyleafEztron 2.4 0.27 1.9 3.0 a b SalanovaRedOakleaf 3.7 0.23 3.2 4.1 a b
EazyleafEzrilla 2.4 0.27 1.8 2.9 a b EazyleafEzbruke 3.7 0.23 3.2 4.1 a b
SalanovaGreenOakleaf1 2.2 0.33 1.6 2.9 a b EazyleafBurgandy2 3.7 0.30 3.1 4.3 a b
SalanovaGreenButter 2.1 0.27 1.5 2.6     b EazyleafBrentwood 3.6 0.23 3.1 4.0 a b

SalanovaRedIncised2 3.5 0.35 2.8 4.2 a b
EazyleafBoynton 3.4 0.23 2.9 3.8     b
SalanovaRedSweetCrisp 3.1 0.23 2.7 3.6     b
EazyleafBuckley 2.9 0.35 2.2 3.6     b

Variety emmean SE lowerCI upperCI group Variety emmean SE lowerCI upperCI group
SalanovaRedButter 3.6 0.21 3.2 4.0 a    EazyleafEzbruke 3.7 0.28 3.2 4.3 a    
EazyleafEzbruke 3.5 0.21 3.1 4.0 a    EazyleafBurgandy2 3.6 0.35 2.9 4.3 a b
EazyleafBoynton 3.4 0.21 3.0 3.8 a    EazyleafStanford 3.6 0.35 2.9 4.3 a b
SalanovaRedSweetCrisp 3.3 0.21 2.9 3.8 a b EazyleafBoynton 3.5 0.28 2.9 4.0 a b
EazyleafBuckley 3.3 0.33 2.6 3.9 a b EazyleafBuckley 3.4 0.43 2.6 4.3 a b
SalanovaRedIncised1 3.2 0.33 2.6 3.9 a b EazyleafBurgandy1 3.2 0.35 2.5 3.8 a b
SalanovaRedIncised2 3.2 0.33 2.6 3.9 a b SalanovaRedIncised1 3.1 0.43 2.2 3.9 a b
EazyleafBurgandy1 3.1 0.27 2.6 3.7 a b EazyleafBrentwood 3.0 0.28 2.5 3.6 a b
EazyleafBrentwood 2.9 0.21 2.5 3.4 a b SalanovaRedIncised2 2.9 0.43 2.1 3.8 a b
SalanovaRedOakleaf 2.9 0.21 2.5 3.3 a b SalanovaRedOakleaf 2.7 0.28 2.2 3.3 a b
EazyleafStanford 2.8 0.27 2.3 3.3 a b SalanovaRedSweetCrisp 2.7 0.28 2.1 3.2 a b
EazyleafBurgandy2 2.4 0.27 1.9 2.9     b SalanovaRedButter 2.4 0.28 1.9 3.0     b
     -   Upper and lower limits for 95% confidence interval      -   Upper and lower limits for 95% confidence interval

     -    Significance level for differences (alpha) = 0.10

Butterhead Lettuce - Appearance

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10

Green One-Cut Lettuce - Appearance

     -   Upper and lower limits for 95% confidence interval

Little Gem Lettuce - Appearance

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10

Little Gem Lettuce - Overall Preference

     -    Significance level for differences (alpha) = 0.10

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10

     -    Significance level for differences (alpha) = 0.10

Red One-Cut Lettuce - Texture Red One-Cut Lettuce - Bitterness

Red One-Cut Lettuce - Appearance

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10

Green One-Cut Lettuce - Bitterness

     -   Upper and lower limits for 95% confidence interval

     -    Significance level for differences (alpha) = 0.10
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Variety emmean SE lowerCI upperCI group Variety emmean SE lowerCI upperCI group
SalanovaRedOakleaf 3.2 0.23 2.7 3.6 a    SalanovaRedButter 3.2 0.25 2.7 3.7 a    
SalanovaRedIncised2 3.3 0.33 2.7 3.9 a b SalanovaRedSweetCrisp 2.9 0.25 2.4 3.4 a b
EazyleafBurgandy1 3.1 0.27 2.6 3.7 a b EazyleafBuckley 2.7 0.38 1.9 3.4 a b
SalanovaRedSweetCrisp 2.9 0.23 2.4 3.3 a b SalanovaRedOakleaf 2.5 0.25 2.0 3.0 a b
EazyleafBrentwood 2.9 0.23 2.4 3.3 a b EazyleafBurgandy1 2.5 0.31 1.8 3.1 a b
SalanovaRedIncised1 2.6 0.33 1.9 3.2 a b EazyleafEzbruke 2.4 0.25 1.9 2.9 a b
EazyleafBoynton 2.6 0.23 2.1 3.0 a b EazyleafBurgandy2 2.4 0.31 1.8 3.0 a b
EazyleafStanford 2.6 0.27 2.0 3.1 a b SalanovaRedIncised1 2.2 0.38 1.4 2.9 a b
EazyleafEzbruke 2.5 0.23 2.0 2.9 a b EazyleafStanford 2.1 0.31 1.5 2.7 a b
EazyleafBuckley 2.4 0.33 1.8 3.1 a b SalanovaRedIncised2 2.0 0.38 1.3 2.8 a b
SalanovaRedButter 2.4 0.23 2.0 2.9     b EazyleafBrentwood 2.2 0.25 1.7 2.7     b
EazyleafBurgandy2 2.2 0.27 1.7 2.7     b EazyleafBoynton 2.1 0.25 1.6 2.6     b

     -    Significance level for differences (alpha) = 0.10

Red One-Cut Lettuce - Overall Preference

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10

Red One-Cut Lettuce - Intensity

     -   Upper and lower limits for 95% confidence interval
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Variety emmean SE lowerCI upperCI group Variety emmean SE lowerCI upperCI group
OrangeSherbet 4.3 0.32 3.6 4.9 a    TrueLove 4.3 0.33 3.6 4.9 a           
AnnasCharentais 4.0 0.32 3.3 4.6 a    Dago 4.1 0.33 3.4 4.7 a           
TrueLove 3.8 0.32 3.1 4.4 a b DakotaSisters 4.1 0.33 3.4 4.7 a           
Triton 3.7 0.32 3.1 4.3 a b FirstKiss2 3.9 0.33 3.2 4.5 a b        
Tirreno 3.7 0.32 3.1 4.3 a b FirstKiss1 3.7 0.33 3.0 4.3 a b c    
Divergent2 3.7 0.32 3.1 4.3 a b Triton 3.2 0.33 2.5 3.8 a b c d
Dago 3.7 0.32 3.0 4.3 a b AnnasCharentais 3.1 0.33 2.4 3.7 a b c d
Iperione 3.6 0.32 3.0 4.2 a b Divergent2 3.0 0.33 2.3 3.6 a b c d
Divergent1 3.6 0.32 3.0 4.2 a b Spear 2.7 0.33 2.0 3.3     b c d
Savor 3.3 0.32 2.7 3.9 a b Divergent1 2.7 0.33 2.0 3.3     b c d
FirstKiss2 3.3 0.32 2.6 3.9 a b Iperione 2.5 0.33 1.8 3.1         c d
Spear 3.2 0.32 2.6 3.8 a b Savor 2.4 0.33 1.7 3.0         c d
FirstKiss1 3.1 0.32 2.4 3.7 a b OrangeSherbet 2.4 0.33 1.7 3.0         c d
DakotaSisters 2.7 0.32 2.0 3.3     b Tirreno 2.1 0.33 1.4 2.7            d

Variety emmean SE lowerCI upperCI group Variety emmean SE lowerCI upperCI group
TrueLove 4.5 0.32 3.9 5.0 a          DakotaSisters 2.2 0.26 1.7 2.8 a    
Divergent2 3.8 0.32 3.2 4.5 a b      Savor 2.0 0.26 1.5 2.6 a b
DakotaSisters 3.4 0.32 2.8 4.1 a b c  TrueLove 1.8 0.26 1.3 2.4 a b
FirstKiss2 3.2 0.32 2.6 3.9  b c Divergent1 1.8 0.26 1.3 2.4 a b
Divergent1 3.2 0.32 2.6 3.9  b c FirstKiss1 1.7 0.26 1.2 2.3 a b
FirstKiss1 3.1 0.32 2.5 3.8  b c Tirreno 1.7 0.26 1.2 2.3 a b
Dago 2.7 0.32 2.1 3.4      b c d AnnasCharentais 1.6 0.26 1.1 2.2 a b
Spear 2.7 0.32 2.1 3.4      b c d FirstKiss2 1.5 0.26 1.0 2.1 a b
OrangeSherbet 2.6 0.32 2.0 3.3      b c d Triton 1.5 0.26 1.0 2.1 a b
Iperione 2.6 0.32 2.0 3.3      b c d Iperione 1.5 0.26 1.0 2.1 a b
Triton 2.4 0.32 1.8 3.1         c d Divergent2 1.5 0.26 1.0 2.1 a b
Savor 2.4 0.32 1.8 3.1         c d Dago 1.4 0.26 0.9 2.0 a b
AnnasCharentais 2.2 0.32 1.6 2.9         c d Spear 1.4 0.26 0.9 2.0 a b
Tirreno 1.5 0.32 0.9 2.2            d OrangeSherbet 1.3 0.26 0.8 1.9     b

Variety emmean SE lowerCI upperCI group Variety emmean SE lowerCI upperCI group
TrueLove 4.3 0.25 3.8 4.8 a               TrueLove 4.8 0.35 4.1 5.0 a        
DakotaSisters 3.7 0.25 3.2 4.2 a b           DakotaSisters 4.0 0.35 3.3 4.7 a b    
FirstKiss2 3.4 0.25 2.9 3.9 a b c       Divergent2 3.4 0.35 2.7 4.1 a b c
Divergent2 3.4 0.25 2.9 3.9 a b c       FirstKiss1 3.4 0.35 2.7 4.1 a b c
FirstKiss1 3.3 0.25 2.8 3.8 a b c d   FirstKiss2 3.4 0.35 2.7 4.1 a b c
Spear 3.0 0.25 2.5 3.5     b c d e Dago 2.8 0.35 2.1 3.5        b c d
Triton 2.9 0.25 2.4 3.4     b c d e Divergent1 2.7 0.35 2.0 3.4        b c d
Dago 2.8 0.25 2.3 3.3     b c d e Triton 2.6 0.35 1.9 3.3        b c d
Divergent1 2.7 0.25 2.2 3.2     b c d e Iperione 2.6 0.35 1.9 3.3        b c d
AnnasCharentais 2.4 0.25 1.9 2.9           c d e f Spear 2.5 0.35 1.8 3.2           c d
Savor 2.4 0.25 1.9 2.9           c d e f Savor 2.3 0.35 1.6 3.0           c d
Iperione 2.3 0.25 1.8 2.8              d e f OrangeSherbet 2.3 0.35 1.6 3.0           c d
OrangeSherbet 2.0 0.25 1.5 2.5                  e f AnnasCharentais 2.0 0.35 1.3 2.7           c d
Tirreno 1.4 0.25 0.9 1.9                      f Tirreno 1.6 0.35 0.9 2.3              d

     -    Significance level for differences (alpha) = 0.10

Orange-Fleshed Melons - Appearance

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10

Orange-Fleshed Melons - Texture

     -   Upper and lower limits for 95% confidence interval

Orange-Fleshed Melons - Overall Preference

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10

Orange-Fleshed Melons - Sweetness

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10

Orange-Fleshed Melons - Acidity

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10

Orange-Fleshed Melons - Intensity

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10
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Variety emmean SE lowerCI upperCI group Variety emmean SE lowerCI upperCI group
E25G.00488 3.6 0.27 3.1 4.2 a       E25G.00488 3.0 0.29 2.4 3.6 a    
E25G.00345 2.3 0.27 1.8 2.9 b E25G.00345_2 2.6 0.29 2.0 3.2 a b
E25G.00345_2 1.9 0.27 1.4 2.5 b E25G.00345 2.3 0.29 1.7 2.9     b

Galia Melons - Texture

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10

Galia Melons - Intensity

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10
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Variety emmean SE lowerCI upperCI group Variety emmean SE lowerCI upperCI group
E20B.30199 4.1 0.24 3.6 4.6 a    Flavorburst1 3.6 0.28 3.1 4.2 a    
OrangeMarmalade 3.8 0.24 3.3 4.3 a    E20B.30199 3.3 0.28 2.7 3.8 a b
Flavorburst2 3.6 0.24 3.2 4.1 a    OrangeMarmalade 3.2 0.28 2.6 3.8 a b
Flavorburst1 3.4 0.24 2.9 3.9 a b Flavorburst2 2.9 0.28 2.3 3.5 a b
Whitney 2.6 0.24 2.2 3.1     b Whitney 2.3 0.28 1.7 2.8     b

Variety emmean SE lowerCI upperCI group Variety emmean SE lowerCI upperCI group
Flavorburst1 3.1 0.24 2.6 3.6 a    Flavorburst2 3.6 0.31 3.0 4.3 a       
OrangeMarmalade 3.0 0.24 2.5 3.5 a    Flavorburst1 3.5 0.31 2.8 4.1 a       
Flavorburst2 3.0 0.24 2.5 3.5 a    OrangeMarmalade 3.4 0.31 2.7 4.0 a       
E20B.30199 2.6 0.24 2.2 3.1 a b E20B.30199 3.1 0.31 2.5 3.7 a       
Whitney 2.1 0.24 1.6 2.6     b Whitney 1.4 0.31 1.0 2.0 b

Variety emmean SE lowerCI upperCI group
Flavorburst2 4.5 0.28 3.9 5.0 a    
OrangeMarmalade 4.1 0.28 3.5 4.7 a    
Whitney 3.6 0.28 3.1 4.2 a b
Flavorburst1 3.6 0.28 3.0 4.1 a b
E20B.30199 2.9 0.28 2.4 3.5     b

Variety emmean SE lowerCI upperCI group Variety emmean SE lowerCI upperCI group
KingoftheNorth 4.4 0.22 3.9 4.8 a                E20B.30236 4.4 0.21 3.9 4.8 a    
Procraft 4.3 0.21 3.9 4.8 a b            Beachcraft2 4.0 0.21 3.6 4.4 a b
Ace1 4.2 0.22 3.7 4.6 a b c        Aristotle 4.0 0.21 3.6 4.4 a b
E20B.30236 4.1 0.21 3.7 4.5 a b c        WisconsinLakes 3.9 0.22 3.5 4.3 a b
Beachcraft2 3.9 0.21 3.5 4.3 a b c d    Beachcraft1 3.9 0.21 3.4 4.3 a b
EarlyRedSweet 3.6 0.22 3.2 4.1 a b c d e KingoftheNorth 3.8 0.22 3.4 4.2 a b
Peacework 3.5 0.22 3.0 3.9    b c d e E20B.30136 3.8 0.21 3.4 4.2 a b
Ace2 3.5 0.22 3.0 3.9    b c d e Peacework 3.7 0.22 3.3 4.1 a b
Aristotle 3.4 0.21 3.0 3.8        c d e Procraft 3.6 0.21 3.2 4.0 a b
WisconsinLakes 3.2 0.22 2.7 3.6           d e Ace1 3.5 0.22 3.1 4.0 a b
Beachcraft1 3.1 0.21 2.7 3.5           d e EarlyRedSweet 3.3 0.22 2.9 3.8     b
E20B.30136 2.9 0.21 2.5 3.3               e Ace2 3.3 0.22 2.9 3.8     b

     -    Significance level for differences (alpha) = 0.10

Orange+Yellow Bell Peppers - Sweetness

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10

Orange+Yellow Bell Peppers - Texture

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10

     -    Significance level for differences (alpha) = 0.10

Orange+Yellow Bell Peppers - Overall Preference

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10

     -   Upper and lower limits for 95% confidence interval

     -   Upper and lower limits for 95% confidence interval

Orange+Yellow Bell Peppers - Intensity

Orange+Yellow Bell Peppers - Appearance

Red Bell Peppers - Appearance

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10

Red Bell Peppers - Texture

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10
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Variety emmean SE lowerCI upperCI group Variety emmean SE lowerCI upperCI group
WisconsinLakes 3.5 0.29 2.9 4.0 a    Beachcraft2 2.5 0.29 1.9 3.1 a    
KingoftheNorth 3.5 0.29 2.9 4.0 a    Ace2 2.5 0.30 1.9 3.1 a    
Peacework 3.0 0.29 2.5 3.6 a b Ace1 2.3 0.30 1.7 2.9 a b
E20B.30136 2.9 0.27 2.4 3.5 a b EarlyRedSweet 2.3 0.30 1.7 2.9 a b
Ace2 2.8 0.29 2.3 3.4 a b Peacework 2.0 0.30 1.4 2.6 a b
Procraft 2.8 0.27 2.3 3.4 a b Procraft 2.0 0.29 1.4 2.6 a b
E20B.30236 2.8 0.27 2.3 3.4 a b KingoftheNorth 1.8 0.30 1.2 2.4 a b
Beachcraft1 2.8 0.27 2.2 3.3 a b E20B.30236 1.8 0.29 1.2 2.4 a b
Aristotle 2.7 0.27 2.1 3.2 a b E20B.30136 1.7 0.29 1.1 2.3 a b
Beachcraft2 2.4 0.27 1.9 3.0 a b Beachcraft1 1.7 0.29 1.1 2.2 a b
Ace1 2.4 0.29 1.8 3.0 a b Aristotle 1.7 0.29 1.1 2.2 a b
EarlyRedSweet 2.0 0.29 1.5 2.6     b WisconsinLakes 1.6 0.30 1.0 2.2     b

Variety emmean SE lowerCI upperCI group Variety emmean SE lowerCI upperCI group
Procraft 3.6 0.28 3.0 4.1 a    Carmen2 4.5 0.27 4.0 5.0 a        
Aristotle 3.4 0.28 2.8 3.9 a b Karma1 4.4 0.29 3.8 5.0 a b    
KingoftheNorth 3.3 0.29 2.7 3.9 a b Carmen1 4.3 0.27 3.7 4.8 a b    
Beachcraft1 3.2 0.28 2.7 3.8 a b Karma2 4.2 0.29 3.7 4.8 a b    
Beachcraft2 3.1 0.28 2.6 3.7 a b EarlyPerfectItalian 4.2 0.29 3.7 4.8 a b    
WisconsinLakes 2.8 0.29 2.3 3.4 a b GypsyQueens 4.1 0.29 3.5 4.7 a b c
E20B.30236 2.7 0.28 2.2 3.3 a b STSDLS213 4.0 0.27 3.5 4.6 a b c
E20B.30136 2.6 0.28 2.1 3.2 a b BridgetoParis2 4.0 0.27 3.5 4.6 a b c
Ace2 2.6 0.29 2.0 3.1 a b StockyRedRoaster 4.0 0.29 3.4 4.5 a b c
Ace1 2.6 0.29 2.0 3.1 a b ItalianSweetFryer 3.3 0.27 2.7 3.8        b c d
EarlyRedSweet 2.5 0.29 1.9 3.0 a b BridgetoParis1 3.0 0.27 2.5 3.6            c d
Peacework 2.4 0.29 1.8 3.0     b JohnsSweetFry 2.7 0.29 2.1 3.2               d

     -   Upper and lower limits for 95% confidence interval

Red Bell Peppers - Overall Preference 

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10      -    Significance level for differences (alpha) = 0.10

Red Corno di Toro Peppers - Appearance 

     -    Significance level for differences (alpha) = 0.10

Red Bell Peppers - Sweetness

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10

Red Bell Peppers - Bitterness

     -   Upper and lower limits for 95% confidence interval
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Variety emmean SE lowerCI upperCI group
RedPrairie 4.3 0.62 2.8 5.0 a    
RedEndeavor 4.0 0.62 2.5 5.0 a b
WLxRDT404 3.8 0.62 2.3 5.0 a b
PxC 3.3 0.62 1.8 4.7 a b
AlaskaSweetheart 3.0 0.62 1.5 4.5 a b
Cinnabar 2.5 0.62 1.0 4.0     b

Variety emmean SE lowerCI upperCI group
Cinnabar 4.3 0.44 3.3 5.0 a    
WLxRDT404 3.8 0.44 2.8 4.7 a b
RedPrairie 3.3 0.44 2.3 4.2 a b
RedEndeavor 3.0 0.44 2.0 4.0 a b
AlaskaSweetheart 2.8 0.44 1.8 3.7     b
PxC 2.5 0.44 1.5 3.5     b

Variety emmean SE lowerCI upperCI group
Allehanna 2.8 0.38 2.0 3.6 a    
DaisyGold 1.8 0.38 1.0 2.6 a b
GoldCoin 1.8 0.38 1.0 2.6 a b
Carola 1.4 0.38 1.0 2.2     b
W13103-16Y 1.2 0.38 1.0 2.0     b

Yellow Potatoes - Bitterness

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10

Red Potatoes - Appearance

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10

Red Potatoes - Umami

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10
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Variety emmean SE lowerCI upperCI group
SGLL.SM.2.17.4 4.2 0.24 3.8 4.7 a              
SGLL.LG.1.17.1 3.7 0.25 3.2 4.2 a b          
GGO4.F4.3 3.5 0.24 3.1 4.0 a b c       
JBDE.F3.3 3.3 0.34 2.7 4.0 a b c d    
45L23.S2.16.1 3.0 0.34 2.3 3.6 a b c d e
SGTA.F4.4 2.9 0.34 2.3 3.6 a b c d e
SGPF.F3.4 2.9 0.34 2.3 3.6 a b c d e
A6JB.F3.5 2.8 0.34 2.2 3.5 a b c d e
A6JB.F3.4 2.8 0.34 2.2 3.5 a b c d e
GGO4.F4.2 3.0 0.25 2.5 3.5 b c d
JBGG.F3.4 3.0 0.25 2.5 3.5 b c d
CSDE.F4.3 3.0 0.20 2.6 3.3 b c d
623 2.9 0.24 2.4 3.4 b c d
SGPF.F3.1 2.8 0.34 2.1 3.5     b c d e
15H07.10.4.4 2.8 0.24 2.3 3.2     b c d e
GGO4.F4.1 2.4 0.34 1.8 3.1     b c d e
45L23R.17.1 2.4 0.34 1.8 3.1     b c d e
JBGG.F3.2 2.3 0.34 1.7 3.0        c d e
SGPF.F3.2 2.5 0.24 2.1 3.0           d e
08H02.EB911 2.1 0.34 1.4 2.8           d e
JBGG.F3.5 1.7 0.25 1.2 2.2               e

Breeding Tomatoes (High Tunnel) - Sweetness

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10
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Variety emmean SE lowerCI upperCI group
SGLL.SM.2.17.4 3.7 0.25 3.2 4.2 a       
GGO4.F4.3 3.4 0.25 2.9 3.9 a b    
SGLL.LG.1.17.1 3.3 0.26 2.7 3.8 a b    
45L23.S2.16.1 3.4 0.37 2.7 4.1 a b c
SGPF.F3.2 3.1 0.25 2.5 3.6 a b c
623 3.1 0.25 2.5 3.6 a b c
CSDE.F4.3 3.0 0.21 2.6 3.4 a b c
15H07.10.4.4 3.0 0.25 2.5 3.5 a b c
JBGG.F3.4 2.9 0.26 2.4 3.5 a b c
SGTA.F4.4 2.8 0.37 2.1 3.5 a b c
45L23R.17.1 2.8 0.37 2.1 3.5 a b c
JBDE.F3.3 2.8 0.37 2.1 3.5 a b c
GGO4.F4.2 2.7 0.26 2.2 3.2 a b c
SGPF.F3.4 2.6 0.37 1.9 3.4 a b c
A6JB.F3.5 2.5 0.37 1.7 3.2 a b c
08H02.EB911 2.4 0.37 1.7 3.1 a b c
SGPF.F3.1 2.3 0.37 1.6 3.0 a b c
GGO4.F4.1 2.3 0.37 1.6 3.0 a b c
JBGG.F3.2 2.3 0.37 1.6 3.0 a b c
A6JB.F3.4 2.1 0.37 1.4 2.9     b c
JBGG.F3.5 1.9 0.26 1.4 2.5         c

Breeding Tomatoes (High Tunnel) - Intensity

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10
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Variety emmean SE lowerCI upperCI group
GGO4.F4.3 4.1 0.30 3.5 4.7 a    
SGLL.LG.1.17.1 4.0 0.31 3.4 4.6 a    
45L23.S2.16.1 4.2 0.44 3.3 5.0 a b
SGLL.SM.2.17.4 3.8 0.30 3.2 4.4 a b
CSDE.F4.3 3.4 0.25 2.9 3.9 a b
GGO4.F4.1 3.4 0.44 2.5 4.2 a b
15H07.10.4.4 3.2 0.30 2.6 3.8 a b
45L23R.17.1 3.2 0.44 2.3 4.1 a b
GGO4.F4.2 3.1 0.31 2.5 3.7 a b
JBGG.F3.4 3.1 0.31 2.5 3.7 a b
SGTA.F4.4 3.0 0.44 2.2 3.9 a b
JBGG.F3.2 3.0 0.44 2.2 3.9 a b
623 3.0 0.30 2.4 3.6 a b
SGPF.F3.4 2.9 0.44 2.0 3.7 a b
SGPF.F3.1 2.9 0.44 2.0 3.7 a b
JBDE.F3.3 2.9 0.44 2.0 3.7 a b
A6JB.F3.5 2.9 0.44 2.0 3.7 a b
SGPF.F3.2 2.8 0.30 2.3 3.4 a b
08H02.EB911 2.5 0.44 1.6 3.4 a b
JBGG.F3.5 2.4 0.31 1.8 3.0     b
A6JB.F3.4 2.2 0.44 1.3 3.1     b

Breeding Tomatoes (High Tunnel) - Overall Preference

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10
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Variety emmean SE lowerCI upperCI group Variety emmean SE lowerCI upperCI group
Sungold 3.7 0.24 3.2 4.2 a       Sungold 4.7 0.25 4.2 5.0 a    
JTO1099_2 3.1 0.24 2.6 3.7 b JTO1099_1 4.3 0.25 3.8 4.8 a b
JTO1099_1 3.1 0.24 2.6 3.7 b JTO1099_2 3.9 0.25 3.3 4.4     b

Variety emmean SE lowerCI upperCI group Variety emmean SE lowerCI upperCI group
Latah 3.6 0.34 2.9 4.2 a    45L23 4.7 0.30 4.1 5.0 a    
45L23 3.3 0.34 2.7 4.0 a    Latah 4.3 0.30 3.7 4.9 a b
RedRacer 3.3 0.34 2.7 4.0 a    RCHybrid 4.0 0.30 3.4 4.6 a b
RCHybrid 2.8 0.34 2.1 3.5 a b MountainMagic 3.7 0.30 3.1 4.3     b
MountainMagic 2.7 0.34 2.0 3.4 a b RedRacer 3.4 0.30 2.8 4.1     b
SGLL4 1.8 0.34 1.1 2.5     b SGLL4 3.4 0.30 2.8 4.1     b

Variety emmean SE lowerCI upperCI group Variety emmean SE lowerCI upperCI group
RCHybrid 3.9 0.35 3.2 4.6 a    DeWeeseStreaked 3.3 0.35 2.6 4.0 a    
MountainMagic 3.0 0.35 2.3 3.7 a b 623 2.9 0.35 2.1 3.6 a b
Latah 3.0 0.35 2.3 3.7 a b OmasOrange 2.4 0.35 1.7 3.2 a b
RedRacer 2.9 0.35 2.2 3.6 a b 665 2.4 0.35 1.7 3.2 a b
45L23 2.8 0.35 2.1 3.5 a b Azoychka 2.1 0.35 1.4 2.9     b
SGLL4 2.4 0.35 1.8 3.1     b SunriseSauce 2.0 0.35 1.3 2.7     b

Variety emmean SE lowerCI upperCI group Variety emmean SE lowerCI upperCI group
DeWeeseStreaked 2.9 0.41 2.0 3.7 a    Aurora 4.1 0.37 3.4 4.9 a       
665 2.6 0.41 1.7 3.4 a b 2331.1_2 3.9 0.36 3.1 4.6 a b    
OmasOrange 2.1 0.41 1.3 3.0 a b 15H07.10.4.4 3.9 0.36 3.1 4.6 a b    
Azoychka 2.1 0.41 1.3 3.0 a b WHybrid 3.8 0.36 3.0 4.5 a b    
623 1.9 0.41 1.0 2.7 a b VitalisLBresistant 3.5 0.36 2.8 4.2 a b c
SunriseSauce 1.3 0.41 1.0 2.1     b Scotia 3.3 0.37 2.5 4.0 a b c

MountainPrincess1 3.3 0.37 2.5 4.0 a b c
Galahad 3.0 0.36 2.3 3.7 a b c
MountainPrincess2 3.0 0.37 2.2 3.8 a b c
2331.1_1 2.9 0.36 2.1 3.6 a b c
OSA404 2.7 0.37 1.9 3.5    b c
08H02.EB911 2.7 0.37 1.9 3.5    b c
Brandywise 2.5 0.36 1.8 3.2        c
Starfire 2.3 0.37 1.5 3.0        c

     -    Significance level for differences (alpha) = 0.10

Red Tomatoes (Field) - Appearance

     -   Upper and lower limits for 95% confidence interval

     -    Significance level for differences (alpha) = 0.10

Orange+Yellow Tomatoes (Field) - Overall Preference

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10

     -    Significance level for differences (alpha) = 0.10
     -   Upper and lower limits for 95% confidence interval

Cocktail Tomatoes (Field) - Acidity

Orange+Yellow Tomatoes (Field) - Sweetness

     -   Upper and lower limits for 95% confidence interval

Cherry Tomatoes (Field) - Overall Preference

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10

Cocktail Tomatoes (Field) - Appearance

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10

Cocktail Tomatoes (Field) - Overall Preference

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10

Cherry Tomatoes (Field) - Intensity

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10

145



Variety emmean SE lowerCI upperCI group Variety emmean SE lowerCI upperCI group
Brandywise 2.4 0.25 1.9 2.9 a    Aurora 3.4 0.45 2.5 4.3 a    
OSA404 2.3 0.27 1.8 2.8 a b MountainPrincess2 3.1 0.45 2.2 4.0 a b
WHybrid 1.9 0.25 1.4 2.4 a b Starfire 3.1 0.45 2.2 4.0 a b
08H02.EB911 1.9 0.27 1.3 2.4 a b 15H07.10.4.4 3.0 0.43 2.1 3.9 a b
Galahad 1.8 0.25 1.2 2.3 a b MountainPrincess1 3.0 0.45 2.1 3.9 a b
MountainPrincess2 1.7 0.27 1.2 2.3 a b 2331.1_1 2.5 0.43 1.6 3.4 a b
MountainPrincess1 1.7 0.27 1.2 2.3 a b 08H02.EB911 2.4 0.45 1.5 3.3 a b
Aurora 1.7 0.27 1.2 2.3 a b Scotia 2.3 0.45 1.4 3.2 a b
15H07.10.4.4 1.6 0.25 1.1 2.1 a b WHybrid 2.3 0.43 1.4 3.1 a b
Starfire 1.6 0.27 1.0 2.1 a b Brandywise 2.3 0.43 1.4 3.1 a b
VitalisLBresistant 1.4 0.25 1.0 1.9     b OSA404 2.1 0.45 1.2 3.0 a b
2331.1_2 1.4 0.25 1.0 1.9     b VitalisLBresistant 2.1 0.43 1.2 3.0 a b
2331.1_1 1.4 0.25 1.0 1.9     b 2331.1_2 2.0 0.43 1.1 2.9 a b
Scotia 1.3 0.27 1.0 1.8     b Galahad 1.8 0.43 1.0 2.6     b

Variety emmean SE lowerCI upperCI group Variety emmean SE lowerCI upperCI group
WHybrid 2.9 0.34 2.2 3.6 a    15H07.10.4.4 2.6 0.31 2.0 3.3 a    
VitalisLBresistant 2.8 0.34 2.1 3.4 a b VitalisLBresistant 2.5 0.31 1.9 3.1 a b
Brandywise 2.5 0.34 1.8 3.2 a b Starfire 2.4 0.33 1.7 3.1 a b
15H07.10.4.4 2.4 0.34 1.7 3.1 a b 08H02.EB911 2.3 0.33 1.6 2.9 a b
Galahad 2.3 0.34 1.6 2.9 a b MountainPrincess2 2.3 0.33 1.6 2.9 a b
08H02.EB911 2.2 0.36 1.5 3.0 a b MountainPrincess1 2.3 0.33 1.6 2.9 a b
Starfire 2.2 0.36 1.5 3.0 a b Aurora 2.3 0.33 1.6 2.9 a b
Scotia 2.2 0.36 1.5 3.0 a b WHybrid 2.1 0.31 1.5 2.8 a b
MountainPrincess2 2.2 0.36 1.5 3.0 a b Galahad 2.1 0.31 1.5 2.8 a b
MountainPrincess1 2.2 0.36 1.5 3.0 a b Brandywise 2.1 0.31 1.5 2.8 a b
OSA404 2.1 0.36 1.4 2.8 a b OSA404 2.1 0.33 1.4 2.8 a b
Aurora 2.0 0.36 1.2 2.7 a b Scotia 2.1 0.33 1.4 2.8 a b
2331.1_1 1.5 0.34 1.0 2.2     b 2331.1_1 1.5 0.31 1.0 2.1 a b
2331.1_2 1.5 0.34 1.0 2.2     b 2331.1_2 1.4 0.31 1.0 2.0     b

Variety emmean SE lowerCI upperCI group Variety emmean SE lowerCI upperCI group
2330.1 4.2 0.21 3.7 4.6 a    JTO1007 3.2 0.18 2.9 3.6 a    
EWS-TOM-206 4.1 0.23 3.6 4.5 a    PiluKS 3.0 0.16 2.7 3.3 a b
MountainMerit 3.7 0.23 3.2 4.1 a b EWS-TOM-206 2.9 0.24 2.4 3.4 a b
Siletz 3.6 0.17 3.3 3.9 a b Siletz 2.9 0.16 2.5 3.2 a b
JTO1007 3.6 0.18 3.2 3.9 a b MountainMerit 2.5 0.24 2.1 3.0 a b
PiluKS 3.4 0.17 3.1 3.8     b 2330.1 2.4 0.22 2.0 2.9     b

Variety emmean SE lowerCI upperCI group Variety emmean SE lowerCI upperCI group
MountainMerit 3.0 0.23 2.6 3.5 a    2330.1 3.0 0.20 2.6 3.4 a    
PiluKS 2.8 0.17 2.5 3.1 a b PiluKS 2.8 0.16 2.5 3.1 a    
EWS-TOM-206 2.8 0.23 2.3 3.2 a b Siletz 2.8 0.15 2.5 3.1 a    
Siletz 2.6 0.16 2.3 2.9 a b JTO1007 2.8 0.17 2.5 3.1 a    
JTO1007 2.5 0.18 2.1 2.8 a b EWS-TOM-206 2.6 0.22 2.2 3.0 a b
2330.1 2.3 0.21 1.9 2.7     b MountainMerit 2.1 0.22 1.7 2.5     b

     -    Significance level for differences (alpha) = 0.10

Red Tomatoes (Field) - Acidity

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10

Red Tomatoes (Field) - Intensity

     -   Upper and lower limits for 95% confidence interval

Red Tomatoes (High Tunnel) - Texture

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10

     -    Significance level for differences (alpha) = 0.10

Red Tomatoes (High Tunnel) - Acidity

     -    Significance level for differences (alpha) = 0.10

Red Tomatoes (High Tunnel) - Appearance

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10

Red Tomatoes (High Tunnel) - Sweetness

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10

Red Tomatoes (Field) - Sweetness

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10

Red Tomatoes (Field) - Umami

     -   Upper and lower limits for 95% confidence interval

     -   Upper and lower limits for 95% confidence interval
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Variety emmean SE lowerCI upperCI group Variety emmean SE lowerCI upperCI group
Siletz 3.0 0.16 2.7 3.3 a    A6 4.4 0.32 3.7 5.0 a    
JTO1007 2.9 0.18 2.5 3.3 a b A6TW-13 3.5 0.32 2.8 4.2 a b
PiluKS 2.8 0.16 2.5 3.1 a b CouncilBluffsHeirloom 3.3 0.32 2.6 3.9     b
EWS-TOM-206 2.8 0.24 2.3 3.2 a b 15H08.4.3.4.1 3.0 0.32 2.3 3.7     b
MountainMerit 2.3 0.24 1.8 2.8 a b
2330.1 2.3 0.22 1.9 2.7     b

Variety emmean SE lowerCI upperCI group Variety emmean SE lowerCI upperCI group
A6TW-13 2.6 0.25 2.1 3.2 a    A6 2.4 0.34 1.6 3.1 a    
A6 2.5 0.25 2.0 3.0 a b 15H08.4.3.4.1 2.3 0.34 1.5 3.0 a    
CouncilBluffsHeirloom 2.3 0.25 1.7 2.8 a b A6TW-13 1.6 0.34 1.0 2.4 b
15H08.4.3.4.1 1.9 0.25 1.4 2.4     b CouncilBluffsHeirloom 1.5 0.34 1.0 2.2 b

Variety emmean SE lowerCI upperCI group Variety emmean SE lowerCI upperCI group
A6TW-13 3.4 0.38 2.5 4.2 a    A6TW-13 3.3 0.36 2.5 4.0 a    
A6 2.9 0.38 2.0 3.7 a b A6 2.8 0.36 2.0 3.5 a b
CouncilBluffsHeirloom 2.5 0.38 1.7 3.3     b CouncilBluffsHeirloom 2.3 0.36 1.5 3.0 a b
15H08.4.3.4.1 2.5 0.38 1.7 3.3     b 15H08.4.3.4.1 1.9 0.36 1.1 2.6     b

Variety emmean SE lowerCI upperCI group Variety emmean SE lowerCI upperCI group
ChefsChoicePink 4.6 0.30 4.0 5.2 a    2401 3.2 0.31 2.6 3.8 a    
2401 3.8 0.30 3.2 4.4 a b BWHybrid 3.0 0.31 2.4 3.6 a b
BWHybrid 3.5 0.30 2.9 4.1     b MarthaWashington2 2.9 0.31 2.3 3.5 a b
MarthaWashington2 3.4 0.30 2.8 4.0     b MarthaWashington1 2.3 0.31 1.7 2.9 a b
MarthaWashington1 3.1 0.30 2.5 3.7     b ChefsChoicePink 2.2 0.31 1.6 2.8     b

Variety emmean SE lowerCI upperCI group Variety emmean SE lowerCI upperCI group
ChefsChoicePink 3.8 0.28 3.2 4.4 a       MarthaWashington2 3.1 0.27 2.6 3.6 a       
MarthaWashington1 1.8 0.28 1.2 2.4 b 2401 3.1 0.27 2.6 3.6 a       
MarthaWashington2 1.7 0.28 1.1 2.3 b BWHybrid 3.0 0.27 2.5 3.5 a       
BWHybrid 1.6 0.28 1.0 2.2 b MarthaWashington1 2.7 0.27 2.2 3.2 a       
2401 1.6 0.28 1.0 2.2 b ChefsChoicePink 1.7 0.27 1.2 2.2 b

Pink Tomatoes (Field) - Overall Preference

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10

Pink Tomatoes (Field) - AppearanceRed Tomatoes (High Tunnel) - Overall Preference

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10

Pink Tomatoes (High Tunnel) - Texture

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10

Pink Tomatoes (Field) - Sweetness

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10

Pink Tomatoes (Field) - Bitterness

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10

Pink Tomatoes (Field) - Umami

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10

Pink Tomatoes (High Tunnel) - Acidity

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10

Pink Tomatoes (High Tunnel) - Bitterness

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10

Pink Tomatoes (High Tunnel) - Umami

-   Upper and lower limits for 95% confidence interval
-    Significance level for differences (alpha) = 0.10
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Variety emmean SE lowerCI upperCI group Variety emmean SE lowerCI upperCI group
BWHybrid 3.9 0.27 3.4 4.5 a    2401 4.1 0.30 3.5 4.7 a    
2401 3.5 0.27 3.0 4.1 a b BWHybrid 3.6 0.30 3.0 4.2 a b
MarthaWashington2 3.5 0.27 3.0 4.1 a b MarthaWashington2 3.1 0.30 2.5 3.7 a b
ChefsChoicePink 2.8 0.27 2.3 3.4     b ChefsChoicePink 3.0 0.30 2.4 3.6     b
MarthaWashington1 2.6 0.27 2.1 3.2     b MarthaWashington1 2.7 0.30 2.1 3.3     b

Pink Tomatoes (High Tunnel) - Intensity

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10

Pink Tomatoes (High Tunnel) - Overall Preference

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10
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Variety emmean SE lowerCI upperCI group Variety emmean SE lowerCI upperCI group
Waltham1 4.3 0.26 3.8 4.8 a     Waltham2 3.9 0.24 3.4 4.3 a    
Waldo 4.0 0.26 3.5 4.5 a b Bugle 3.8 0.24 3.3 4.3 a    
Waltham2 3.9 0.26 3.4 4.5 a b Waldo 3.6 0.24 3.1 4.0 a    
Havana 3.7 0.26 3.2 4.2 a b Tiana 3.4 0.24 2.9 3.8 a    
Bugle 3.4 0.26 2.9 4.0        b c Waltham1 3.1 0.24 2.7 3.6 a b
Tiana 3.4 0.26 2.9 3.9        b c Butterbush 3.1 0.24 2.7 3.6 a b
Butterbush 2.7 0.26 2.2 3.2            c Havana 2.3 0.24 1.8 2.8     b

Variety emmean SE lowerCI upperCI group Variety emmean SE lowerCI upperCI group
Bugle 3.3 0.25 2.8 3.7 a    Butterbush 2.3 0.25 1.8 2.8 a    
Waltham1 2.8 0.25 2.3 3.3 a b Waldo 2.0 0.25 1.5 2.5 a b
Waldo 2.8 0.25 2.3 3.3 a b Havana 2.0 0.25 1.5 2.5 a b
Waltham2 2.7 0.25 2.2 3.2 a b Waltham2 1.9 0.25 1.4 2.4 a b
Butterbush 2.6 0.25 2.1 3.1 a b Tiana 1.8 0.25 1.3 2.3 a b
Havana 2.3 0.25 1.8 2.7     b Waltham1 1.7 0.25 1.2 2.2 a b
Tiana 2.1 0.25 1.6 2.6     b Bugle 1.6 0.25 1.1 2.1     b

Variety emmean SE lowerCI upperCI group Variety emmean SE lowerCI upperCI group
Bugle 3.0 0.24 2.5 3.5 a    Bugle 3.7 0.29 3.1 4.3 a    
Waldo 2.9 0.25 2.5 3.4 a    Waldo 2.9 0.29 2.4 3.5 a b
Waltham1 2.9 0.24 2.4 3.4 a    Waltham2 2.9 0.29 2.3 3.5 a b
Butterbush 2.8 0.24 2.3 3.3 a    Waltham1 2.9 0.29 2.3 3.5 a b
Waltham2 2.4 0.24 2.0 2.9 a b Butterbush 2.3 0.29 1.7 2.9     b
Tiana 2.3 0.24 1.8 2.8 a b Havana 2.2 0.29 1.6 2.8     b
Havana 2.0 0.24 1.5 2.5     b Tiana 2.1 0.29 1.6 2.7     b

Variety emmean SE lowerCI upperCI group Variety emmean SE lowerCI upperCI group
Brulee 4.3 0.26 3.8 4.9 a    Brulee 4.3 0.28 3.7 4.8 a    
Honeynut 4.2 0.26 3.7 4.7 a    Butterscotch 4.2 0.28 3.6 4.7 a    
Hamilton 4.1 0.26 3.6 4.7 a    Honeynut 3.6 0.28 3.0 4.1 a b
Butterscotch 4.1 0.26 3.6 4.7 a    Butterbaby1 3.1 0.28 2.5 3.6        b c
Butterbaby2 3.6 0.26 3.1 4.2 a b Butterbaby2 2.9 0.29 2.4 3.5        b c
Butterbaby1 3.6 0.26 3.1 4.2 a b Hamilton 2.8 0.28 2.3 3.4        b c
AutumnFrost 3.0 0.26 2.5 3.5     b AutumnFrost 2.3 0.28 1.8 2.9            c

     -   Upper and lower limits for 95% confidence interval

Large Butternut Squash - Texture

Large Butternut Squash - Sweetness

     -   Upper and lower limits for 95% confidence interval

Large Butternut Squash - Appearance

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10      -    Significance level for differences (alpha) = 0.10

     -    Significance level for differences (alpha) = 0.10

Large Butternut Squash - Bitterness

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10

Large Butternut Squash - Intensity

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10

Large Butternut Squash - Overall Preference

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10

Mini Butternut Squash - Appearance

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10

Mini Butternut Squash - Texture

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10
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Variety emmean SE lowerCI upperCI group Variety emmean SE lowerCI upperCI group
Butterscotch 4.3 0.27 3.7 4.8 a      Butterscotch 4.1 0.21 3.7 4.5 a          
Brulee 2.8 0.27 2.2 3.3 b Brulee 3.0 0.21 2.6 3.5 b    
Butterbaby2 2.8 0.27 2.2 3.3 b Butterbaby2 2.9 0.22 2.4 3.3 b c
Butterbaby1 2.7 0.27 2.2 3.2 b Honeynut 2.8 0.21 2.4 3.2 b c
Honeynut 2.4 0.27 1.8 2.9 b Butterbaby1 2.8 0.21 2.4 3.2 b c
Hamilton 2.1 0.27 1.6 2.7 b AutumnFrost 2.2 0.21 1.7 2.6         c d
AutumnFrost 2.1 0.27 1.6 2.7 b Hamilton 2.1 0.21 1.7 2.5            d

Variety emmean SE lowerCI upperCI group
Butterscotch 4.1 0.27 3.5 4.6 a      
Brulee 3.7 0.27 3.2 4.2 a b  
Honeynut 3.1 0.27 2.5 3.6      b c
Hamilton 3.1 0.27 2.5 3.6      b c
Butterbaby1 2.8 0.27 2.3 3.4      b c
Butterbaby2 2.6 0.27 2.1 3.1         c
AutumnFrost 2.3 0.27 1.8 2.8         c

Mini Butternut Squash - Sweetness

-   Upper and lower limits for 95% confidence interval
-    Significance level for differences (alpha) = 0.10

Mini Butternut Squash - Intensity

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10

Mini Butternut Squash - Overall Preference

 -   Upper and lower limits for 95% confidence interval
-    Significance level for differences (alpha) = 0.10
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Variety emmean SE lowerCI upperCI group Variety emmean SE lowerCI upperCI group
JWS14-4069 4.6 0.49 3.6 5.0 a    StellaBlue1 4.6 0.36 3.8 5.0 a       
StellaBlue1 4.4 0.49 3.4 5.0 a b SweetFall 4.2 0.36 3.4 5.0 a       
StellaBlue2 4.0 0.49 3.0 5.0 a b JWS14-4069 4.0 0.36 3.2 4.8 a       
SweetFall 3.0 0.49 2.0 4.0 a b StellaBlue2 3.8 0.36 3.0 4.6 a       
JWS17-4547 2.8 0.49 1.8 3.8 a b JWS17-4547 2.2 0.36 1.4 3.0 b
AmericanIndian 2.6 0.49 1.6 3.6     b AmericanIndian 2.0 0.36 1.2 2.8 b

Variety emmean SE lowerCI upperCI group Variety emmean SE lowerCI upperCI group
SweetFall 4.4 0.35 3.7 5.0  a     JWS14-4069 4.4 0.35 3.7 5.0  a        
JWS14-4069 4.2 0.35 3.5 4.9 a b SweetFall 4.0 0.35 3.3 4.7 a b    
StellaBlue1 3.0 0.35 2.3 3.7        b c StellaBlue1 3.2 0.35 2.5 3.9 a b c
StellaBlue2 2.6 0.35 1.9 3.3            c StellaBlue2 3.0 0.35 2.3 3.7    b c
AmericanIndian 1.8 0.35 1.1 2.5            c AmericanIndian 2.6 0.35 1.9 3.3        c
JWS17-4547 1.8 0.35 1.1 2.5            c JWS17-4547 2.4 0.35 1.7 3.1        c

Variety emmean SE lowerCI upperCI group Variety emmean SE lowerCI upperCI group
JWS14-4069 5.0 0.28 4.4 5.0 a                 RedKuriSP 4.2 0.46 3.2 5.0 a       
SweetFall 4.2 0.28 3.6 4.8 a b             OrangeSummerWM 4.0 0.46 3.0 5.0 a       
StellaBlue1 3.6 0.28 3.0 4.2 b c       E30R.00056SP 4.0 0.46 3.0 5.0 a       
StellaBlue2 2.8 0.28 2.2 3.4  c d  OrangeSummerSP2 3.8 0.46 2.8 4.8 a       
JWS17-4547 2.4 0.28 1.8 3.0         d e   RedKuriWM 3.6 0.46 2.6 4.6 a       
AmericanIndian 1.4 0.28 0.8 2.0             e   OrangeSummerSP1 3.6 0.46 2.6 4.6 a       

E30R.00056WM 2.0 0.46 1.0 3.0 b

Variety emmean SE lowerCI upperCI group Variety emmean SE lowerCI upperCI group
OrangeSummerWM 3.8 0.38 3.0 4.6 a    RedKuriSP 3.4 0.41 2.6 4.2 a    
E30R.00056SP 3.2 0.38 2.4 4.0 a b E30R.00056SP 3.4 0.41 2.6 4.2 a    
RedKuriSP 3.2 0.38 2.4 4.0 a b OrangeSummerWM 3.2 0.41 2.4 4.0 a    
OrangeSummerSP2 2.4 0.38 1.6 3.2        b c OrangeSummerSP2 3.2 0.41 2.4 4.0 a    
OrangeSummerSP1 2.4 0.38 1.6 3.2        b c OrangeSummerSP1 2.2 0.41 1.4 3.0 a b
RedKuriWM 1.8 0.38 1.0 2.6            c RedKuriWM 1.4 0.41 0.6 2.2     b
E30R.00056WM 1.2 0.38 0.4 2.0            c E30R.00056WM 1.4 0.41 0.6 2.2     b

Variety emmean SE lowerCI upperCI group
OrangeSummerWM 3.6 0.48 2.6 4.6 a        
RedKuriSP 3.2 0.48 2.2 4.2 a b    
E30R.00056SP 3.0 0.48 2.0 4.0 a b    
OrangeSummerSP2 2.6 0.48 1.6 3.6 a b c
OrangeSummerSP1 2.4 0.48 1.4 3.4 a b c
E30R.00056WM 1.6 0.48 0.6 2.6    b c
RedKuriWM 1.2 0.48 0.2 2.2        c

     -    Significance level for differences (alpha) = 0.10

Blue/Green maxima Squash - Appearance

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10

Blue/Green maxima Squash - Texture

     -   Upper and lower limits for 95% confidence interval

Blue/Green maxima Squash - Sweetness

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10

Blue/Green maxima Squash - Intensity

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10

     -    Significance level for differences (alpha) = 0.10

     -    Significance level for differences (alpha) = 0.10
     -   Upper and lower limits for 95% confidence interval

Pink/Red maxima Squash - Sweetness

     -    Significance level for differences (alpha) = 0.10

Blue/Green maxima Squash - Overall Preference

     -   Upper and lower limits for 95% confidence interval
     -    Significance level for differences (alpha) = 0.10

Pink/Red maxima Squash - Appearance

     -   Upper and lower limits for 95% confidence interval

     -   Upper and lower limits for 95% confidence interval

Pink/Red maxima Squash - Intensity

     -    Significance level for differences (alpha) = 0.10

Pink/Red maxima Squash - Overall Preference

     -   Upper and lower limits for 95% confidence interval
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Appendix F - Correlation Matrices of Relationships between Sensory Variables

Appearance Texture Sweetness Acidity Harshness Intensity
Appearance
Texture -0.33
Sweetness -0.16 -0.77***
Acidity -0.05 -0.34 -0.28
Harshness -0.30 -0.49** -0.46* 0.22
Intensity -0.06 -0.54** -0.75*** 0.56** -0.03
Overall Preference -0.13 -0.61*** -0.71*** 0.26 -0.29 0.71***

Appearance Texture Sweetness Acidity Harshness Intensity
Appearance
Texture -0.77*
Sweetness -0.52 -0.92***
Acidity -0.68 -0.73 -0.56
Harshness -0.40 -0.86** -0.98*** -0.42
Intensity -0.47 -0.67 -0.78* -0.62 -0.68
Overall Preference -0.91** -0.82** -0.60 -0.91** -0.45 0.61

Appearance Texture Sweetness Acidity Harshness Intensity
Appearance
Texture -0.49
Sweetness -0.26 -0.77***
Acidity -0.48 -0.33 -0.24
Harshness -0.29 -0.39 -0.69** -0.43
Intensity -0.03 -0.64** -0.50 -0.39 -0.19
Overall Preference -0.35 -0.87*** -0.88*** -0.01 -0.59* 0.51

Appearance Texture Sweetness Acidity Harshness Intensity
Appearance
Texture -0.92**
Sweetness -0.65 -0.44
Acidity -0.63 -0.39 -0.61
Harshness -0.81* -0.67 -0.90** -0.42
Intensity -0.52 -0.69 -0.15 -0.42 -0.13
Overall Preference -0.97*** -0.84* -0.83* -0.68 -0.90** 0.46

2019 CIOA Flavor Correlations: Orange Carrots

*** p < 0.01    **p < 0.05    *p < 0.10

2019 CIOA Flavor Correlations: Red Carrots

*** p < 0.01    **p < 0.05    *p < 0.10

2019 CIOA Flavor Correlations: Purple Carrots

*** p < 0.01    **p < 0.05    *p < 0.10

2019 CIOA Flavor Correlations: White Yellow Carrots

*** p < 0.01    **p < 0.05    *p < 0.10
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Appearance Texture Sweetness Acidity Harshness Intensity
Appearance
Texture -0.66***
Sweetness -0.37 -0.63***
Acidity -0.26 -0.26 -0.04
Harshness -0.40* -0.49** -0.73*** 0.08
Intensity -0.13 -0.63*** -0.40* 0.49** -0.01
Overall Preference -0.55** -0.77*** -0.82*** 0.03 -0.63*** 0.45**

Appearance Texture Sweetness Acidity Harshness Intensity
Appearance
Texture -0.86**
Sweetness -0.74* 0.92***
Acidity -0.57 0.40 -0.57
Harshness -0.08 0.00 -0.09 -0.69
Intensity -0.38 0.68 -0.85** -0.27 -0.24
Overall Preference -0.84** 0.84** -0.92*** -0.74* -0.18 0.72

Appearance Texture Sweetness Acidity Harshness Intensity
Appearance
Texture -0.30
Sweetness -0.08 -0.76***
Acidity -0.10 -0.29 -0.29
Harshness -0.35* -0.51** -0.43** 0.19
Intensity -0.13 -0.46** -0.74*** 0.54*** -0.08
Overall Preference -0.07 -0.68*** -0.74*** 0.28 -0.32 0.64***

Appearance Texture Sweetness Acidity Harshness Intensity
Appearance
Texture -0.45
Sweetness -0.02 -0.66
Acidity -0.40 -0.00 -0.38
Harshness -0.39 -0.51 -0.88** -0.26
Intensity -0.09 -0.70 -0.96*** -0.20 -0.95***
Overall Preference -0.47 -0.48 -0.79* -0.33 -0.97*** 0.89**

2019 SKC Flavor Correlations: Orange Carrots

*** p < 0.01    **p < 0.05    *p < 0.10

2019 Flavor Correlations: All Orange Carrots

*** p < 0.01    **p < 0.05    *p < 0.10

2019 SKC Flavor Correlations: Red Carrots

*** p < 0.01    **p < 0.05    *p < 0.10

2019 CIOA Flavor Correlations: Non-Orange Carrots

*** p < 0.01    **p < 0.05    *p < 0.10
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Appearance Texture Sweetness Acidity Harshness Intensity
Appearance
Texture -0.22
Sweetness -0.19 -0.75***
Acidity -0.45* -0.25 -0.09
Harshness -0.30 -0.34 -0.58** 0.30
Intensity -0.00 -0.66*** -0.60** 0.35 -0.03
Overall Preference -0.38 -0.76*** -0.82*** 0.05 -0.64*** 0.58**

Appearance Texture Sweetness Acidity Harshness Intensity
Appearance
Texture -0.12
Sweetness -0.32 -0.86**
Acidity -0.50 -0.08 -0.23
Harshness -0.13 -0.80* -0.67 0.16
Intensity -0.49 -0.70 -0.89** 0.42 -0.70
Overall Preference -0.32 -0.91** -0.76* 0.10 -0.78* 0.65

Appearance Texture Sweetness Acidity Harshness Intensity
Appearance
Texture -0.41
Sweetness -0.12 -0.74***
Acidity -0.41 -0.02 -0.32
Harshness -0.22 -0.67** -0.76*** -0.39
Intensity -0.20 -0.66** -0.55* -0.42 -0.48
Overall Preference -0.50 -0.84*** -0.63** -0.09 -0.67** 0.59**

Appearance Texture Sweetness Acidity Harshness Intensity
Appearance
Texture -0.42**
Sweetness -0.23 -0.66***
Acidity -0.06 -0.21 -0.00
Harshness -0.41** -0.46*** -0.64*** 0.19
Intensity -0.03 -0.65*** -0.51*** 0.49*** -0.12
Overall Preference -0.48*** -0.77*** -0.75*** 0.05 -0.65*** 0.52***

*** p < 0.01    **p < 0.05    *p < 0.10

2019 SKC Flavor Correlations: Purple Carrots

*** p < 0.01    **p < 0.05    *p < 0.10

2019 Flavor Correlations: All Purple Carrots

*** p < 0.01    **p < 0.05    *p < 0.10

2019 Flavor Correlations: All Red Carrots

*** p < 0.01    **p < 0.05    *p < 0.10

2019 Flavor Correlations: All Non-Orange Carrots 
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Appearance Texture Sweetness Acidity Harshness Intensity
Appearance
Texture -0.37***
Sweetness -0.17 -0.68***
Acidity -0.02 -0.22 -0.14
Harshness -0.39*** -0.47*** -0.56*** 0.17
Intensity -0.07 -0.56*** -0.60*** 0.53*** -0.05
Overall Preference -0.30** -0.72*** -0.75*** 0.16 -0.52*** 0.56***

Appearance Texture Sweetness Acidity Bitterness Intensity
Appearance
Texture -0.85**
Sweetness -0.79** -0.61
Acidity -0.01 -0.42 -0.08
Bitterness -0.46 -0.59 -0.40 0.21
Intensity -0.35 -0.07 -0.45 0.31 -0.22
Overall Preference -0.69* -0.64 -0.61 0.17 -0.85** -0.09

Appearance Texture Sweetness Acidity Bitterness Intensity
Appearance
Texture -0.53*
Sweetness -0.42 -0.60**
Acidity -0.40 -0.45 -0.67**
Bitterness -0.38 -0.27 -0.08 -0.20
Intensity -0.58** -0.61** -0.27 -0.14 0.20
Overall Preference -0.40 -0.73*** -0.45 -0.25 0.15 0.59**

Appearance Texture Sweetness Acidity Bitterness Intensity
Appearance
Texture -0.04
Sweetness -0.02 -0.85**
Acidity -0.62 -0.01 -0.44
Bitterness -0.50 -0.59 -0.80* -0.16
Intensity -0.78* -0.21 -0.40 -0.78* -0.09
Overall Preference -0.12 -0.64 -0.81* -0.47 -0.49 -0.42

2019 SKC Flavor Correlations: Pickling Cucumbers

*** p < 0.01    **p < 0.05    *p < 0.10

2019 SKC Flavor Correlations: Asian Cucumbers

*** p < 0.01    **p < 0.05    *p < 0.10

2019 SKC Flavor Correlations: Mini Cucumbers

*** p < 0.01    **p < 0.05    *p < 0.10

2019 Flavor Correlations: All Carrots

*** p < 0.01    **p < 0.05    *p < 0.10
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Appearance Texture Sweetness Acidity Bitterness Intensity
Appearance
Texture -0.60***
Sweetness -0.52*** -0.64***
Acidity -0.04 -0.22 -0.21
Bitterness -0.31 -0.11 -0.2 0.16
Intensity -0.44** -0.42** -0.37* 0.10 -0.18
Overall Preference -0.54*** -0.68*** -0.55*** 0.10 -0.26 0.36*

Appearance Texture Sweetness Acidity Bitterness Intensity
Appearance
Texture -0.06
Sweetness -0.02 -0.59
Acidity -0.05 -0.47 -0.11
Bitterness -0.23 -0.03 -0.37 -0.30
Intensity -0.21 -0.55 -0.92*** -0.19 -0.34
Overall Preference -0.01 -0.34 -0.85** -0.09 -0.63 0.76**

Appearance Texture Sweetness Acidity Bitterness Intensity
Appearance
Texture -0.89***
Sweetness -0.12 -0.09
Acidity -0.40 -0.51 -0.16
Bitterness -0.36 -0.56 -0.38 -0.57
Intensity -0.26 -0.03 -0.69* -0.13 -0.21
Overall Preference -0.26 -0.46 -0.05 -0.97*** -0.52 0.00

Appearance Texture Sweetness Acidity Bitterness Intensity
Appearance
Texture -0.20
Sweetness -0.31 -0.31
Acidity -0.19 -0.20 -0.21
Bitterness -0.16 -0.27 -0.47* -0.56**
Intensity -0.01 -0.08 -0.63** -0.05 -0.46*
Overall Preference -0.14 -0.32 -0.18 -0.39 -0.45 -0.18

*** p < 0.01    **p < 0.05    *p < 0.10

2019 SKC Flavor Correlations: Little Gem Lettuce

*** p < 0.01    **p < 0.05    *p < 0.10

2019 SKC Flavor Correlations: Green One-Cut Lettuce

*** p < 0.01    **p < 0.05    *p < 0.10

2019 SKC Flavor Correlations: All Cucumbers

*** p < 0.01    **p < 0.05    *p < 0.10

2019 SKC Flavor Correlations: Butterhead Lettuce
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Appearance Texture Sweetness Acidity Bitterness Intensity
Appearance
Texture -0.20
Sweetness -0.31 -0.31
Acidity -0.19 -0.20 -0.21
Bitterness -0.16 -0.27 -0.47* -0.56**
Intensity -0.01 -0.08 -0.63** -0.05 -0.46*
Overall Preference -0.14 -0.32 -0.18 -0.39 -0.45 -0.18

Appearance Texture Sweetness Acidity Bitterness Intensity
Appearance
Texture -0.18
Sweetness -0.06 -0.34
Acidity -0.09 -0.10 -0.08
Bitterness -0.01 -0.36* -0.42** -0.42**
Intensity -0.06 -0.25 -0.66*** -0.15 -0.13
Overall Preference -0.09 -0.52** -0.45** -0.29 -0.65*** 0.09

Appearance Texture Sweetness Acidity Bitterness Intensity
Appearance
Texture -0.11
Sweetness -0.08 -0.68***
Acidity -0.00 -0.09 -0.03
Bitterness -0.05 -0.54*** -0.66*** -0.31*
Intensity -0.11 -0.58*** -0.86*** -0.10 -0.51***
Overall Preference -0.02 -0.64*** -0.71*** -0.29* -0.75*** 0.53***

Appearance Texture Sweetness Acidity Bitterness Intensity
Appearance
Texture -0.33
Sweetness -0.19 0.65**
Acidity -0.59** 0.20 -0.21
Bitterness -0.05 0.28 -0.05 -0.01
Intensity -0.42 0.82*** -0.90*** -0.27 -0.06
Overall Preference -0.36 0.80*** -0.93*** -0.34 -0.02 0.94***

2019 SKC Flavor Correlations: Orange-Fleshed Melons

*** p < 0.01    **p < 0.05    *p < 0.10

Correlations could not be calculated for the Galia Melons market class because it contained too few 
varieties (only three tasting samples).

*** p < 0.01    **p < 0.05    *p < 0.10

2019 SKC Flavor Correlations: Red One-Cut Lettuce

*** p < 0.01    **p < 0.05    *p < 0.10

2019 SKC Flavor Correlations: All One-Cut Lettuce

*** p < 0.01    **p < 0.05    *p < 0.10

2019 SKC Flavor Correlations: All Lettuce
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Appearance Texture Sweetness Acidity Bitterness Intensity
Appearance
Texture -0.30
Sweetness -0.18 0.60**
Acidity -0.58** 0.13 -0.14
Bitterness -0.05 0.32 -0.03 -0.02
Intensity -0.41 0.79*** -0.88*** -0.23 0.08
Overall Preference -0.34 0.80*** -0.92*** -0.27 0.02 0.94***

Appearance Texture Sweetness Acidity Bitterness Intensity
Appearance
Texture -0.13
Sweetness -0.23 -0.66
Acidity -0.48 -0.61 -0.31
Bitterness -0.23 -0.23 -0.73 -0.32
Intensity -0.37 -0.62 -0.81* -0.03 -0.55
Overall Preference -0.27 -0.78 -0.81* -0.12 -0.55 0.96***

Appearance Texture Sweetness Acidity Bitterness Intensity
Appearance
Texture -0.03
Sweetness -0.08 -0.32
Acidity -0.29 -0.29 -0.33
Bitterness -0.36 -0.59** -0.52* -0.38
Intensity -0.23 -0.16 -0.31 -0.13 -0.15
Overall Preference -0.27 -0.34 -0.21 -0.62** -0.44 0.43

Appearance Texture Sweetness Acidity Bitterness Intensity
Appearance
Texture -0.06
Sweetness -0.11 -0.34
Acidity -0.32 -0.32 -0.29
Bitterness -0.30 -0.34 -0.48* -0.34
Intensity -0.29 -0.41* -0.52** -0.08 -0.15
Overall Preference -0.26 -0.56** -0.48* -0.38 -0.32 0.77***

*** p < 0.01    **p < 0.05    *p < 0.10

2019 SKC Flavor Correlations: All Bell Peppers

*** p < 0.01    **p < 0.05    *p < 0.10

2019 SKC Flavor Correlations: All Melons

*** p < 0.01    **p < 0.05    *p < 0.10

2019 SKC Flavor Correlations: Red Bell Peppers

*** p < 0.01    **p < 0.05    *p < 0.10

2019 SKC Flavor Correlations: Orange Yellow Bell Peppers
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Appearance Texture Sweetness Acidity Bitterness Intensity
Appearance
Texture -0.04
Sweetness -0.63 -0.52
Acidity -0.20 -0.94** -0.76
Bitterness -0.35 -0.4 -0.44 -0.08
Intensity -0.44 -0.68 -0.40 -0.72 -0.08
Overall Preference -0.58 -0.53 -0.38 -0.24 -0.93** 0.41

Appearance Texture Sweetness Acidity Bitterness Intensity
Appearance
Texture -0.37
Sweetness -0.11 -0.20
Acidity -0.33 -0.22 -0.02
Bitterness -0.14 -0.01 -0.59** -0.32
Intensity -0.23 -0.07 -0.44 -0.26 0.11
Overall Preference -0.25 -0.00 -0.09 -0.26 0.29 0.07

Appearance Texture Sweetness Acidity Bitterness Intensity
Appearance
Texture -0.28
Sweetness -0.16 -0.32
Acidity -0.29 -0.06 -0.20
Bitterness -0.14 -0.04 -0.54** -0.29
Intensity -0.22 -0.00 -0.33 -0.26 -0.05
Overall Preference -0.09 -0.21 -0.13 -0.12 -0.03 0.11

Appearance Texture Sweetness Acidity Bitterness Intensity
Appearance
Texture 0.03
Sweetness 0.04 -0.05
Acidity 0.05 -0.17 -0.06
Bitterness 0.03 -0.14 -0.50*** -0.25
Intensity 0.21 -0.05 -0.65*** -0.25 -0.17
Overall Preference 0.28 -0.25 -0.56*** -0.10 -0.27 0.67***

2019 SKC Flavor Correlations: Orange Yellow Corno di Toro Peppers

*** p < 0.01    **p < 0.05    *p < 0.10

2019 SKC Flavor Correlations: All Corno di Toro Peppers

*** p < 0.01    **p < 0.05    *p < 0.10

2019 SKC Flavor Correlations: All Sweet Peppers

2019 SKC Flavor Correlations: Red Corno di Toro Peppers

*** p < 0.01    **p < 0.05    *p < 0.10

*** p < 0.01    **p < 0.05    *p < 0.10
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Appearance Texture Sweetness Acidity Bitterness Umami Intensity
Appearance
Texture -0.90**
Sweetness -0.97*** -0.87**
Acidity -0.48 -0.55 -0.37
Bitterness -0.17 -0.04 -0.18 -0.45
Umami -0.45 -0.45 -0.45 -0.85** -0.55
Intensity -0.26 -0.26 -0.40 -0.33 -0.14 0.69
Overall Preference -0.20 -0.48 -0.29 -0.44 -0.34 0.58 0.77*

Appearance Texture Sweetness Acidity Bitterness Umami Intensity
Appearance
Texture -0.15
Sweetness -0.51 -0.87*
Acidity -0.62 -0.47 -0.08
Bitterness -0.06 -0.97*** -0.86* -0.57
Umami -0.00 -0.65 -0.50 -0.77 -0.75
Intensity -0.44 -0.75 -0.48 -0.88* -0.85* 0.77
Overall Preference -0.48 -0.78 -0.48 -0.72 -0.81* 0.49 0.91**

Appearance Texture Sweetness Acidity Bitterness Umami Intensity
Appearance
Texture -0.33
Sweetness -0.29 -0.12
Acidity -0.11 -0.01 -0.41
Bitterness -0.12 -0.12 -0.15 -0.61**
Umami -0.37 -0.70*** -0.15 -0.02 -0.17
Intensity -0.10 -0.41 -0.06 -0.03 -0.09 0.58**
Overall Preference -0.05 -0.73*** -0.14 -0.01 -0.13 0.72*** 0.70***

Correlations could not be calculated for the Multi-Colored Potatoes market class because it contained too few 
varieties (only four tasting samples).

2019 SKC Flavor Correlations: All Potatoes

*** p < 0.01    **p < 0.05    *p < 0.10

2019 SKC Flavor Correlations: Red Potatoes

*** p < 0.01    **p < 0.05    *p < 0.10

2019 SKC Flavor Correlations: Yellow Potatoes

*** p < 0.01    **p < 0.05    *p < 0.10
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Appearance Texture Sweetness Acidity Bitterness Umami Intensity
Appearance
Texture -0.13
Sweetness -0.43 -0.68*
Acidity -0.66 -0.12 -0.22
Bitterness -0.11 -0.35 -0.41 -0.14
Umami -0.04 -0.52 -0.79** -0.66 0.18
Intensity -0.73* -0.50 -0.51 -0.41 0.14 -0.23
Overall Preference -0.68* -0.13 -0.45 -0.11 0.35 -0.27 0.54

Appearance Texture Sweetness Acidity Bitterness Umami Intensity
Appearance
Texture -0.56
Sweetness -0.59 0.46
Acidity -0.56 0.30 -0.80**
Bitterness -0.64 0.00 -0.13 -0.54
Umami -0.58 0.75* -0.46 -0.00 -0.24
Intensity -0.92*** 0.47 -0.78** -0.76** -0.57 0.45
Overall Preference -0.90*** 0.41 -0.26 -0.24 -0.57 0.54 0.76**

Appearance Texture Sweetness Acidity Bitterness Umami Intensity
Appearance
Texture -0.86**
Sweetness -0.88** -0.71
Acidity -0.36 -0.46 -0.45
Bitterness -0.71 -0.47 -0.80* -0.11
Umami -0.32 -0.38 -0.50 -0.22 -0.58
Intensity -0.90** -0.64 -0.96*** -0.48 -0.74* 0.31
Overall Preference -0.81** -0.56 -0.80* -0.03 -0.76* 0.64 0.80*

Appearance Texture Sweetness Acidity Bitterness Umami Intensity
Appearance
Texture -0.23
Sweetness -0.30 -0.81*
Acidity -0.17 -0.80* -0.52
Bitterness -0.71 -0.40 -0.59 -0.47
Umami -0.63 -0.52 -0.63 -0.50 -0.95***
Intensity -0.08 -0.90** -0.94*** -0.64 -0.47 0.58
Overall Preference -0.24 -0.87** -0.87** -0.67 -0.65 0.79* 0.94***

2019 SKC Flavor Correlations: Breeding Tomatoes (Set 1)

*** p < 0.01    **p < 0.05    *p < 0.10

2019 SKC Flavor Correlations: Breeding Tomatoes (Set 3)

*** p < 0.01    **p < 0.05    *p < 0.10

2019 SKC Flavor Correlations: Breeding Tomatoes (Set 2)

*** p < 0.01    **p < 0.05    *p < 0.10

2019 SKC Flavor Correlations: Breeding Tomatoes (Field Day)

*** p < 0.01    **p < 0.05    *p < 0.10
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Appearance Texture Sweetness Acidity Bitterness Umami Intensity
Appearance
Texture 0.33
Sweetness 0.43** -0.68***
Acidity 0.26 -0.30 -0.36*
Bitterness 0.16 -0.02 -0.13 -0.18
Umami 0.18 -0.42** -0.40** -0.38* -0.06
Intensity 0.52*** -0.65*** -0.82*** -0.47** -0.20 0.59***
Overall Preference 0.52*** -0.63*** -0.73*** -0.43** -0.03 0.57*** 0.81***

Appearance Texture Sweetness Acidity Bitterness Umami Intensity
Appearance
Texture -0.03
Sweetness -0.53 -0.17
Acidity -0.59 -0.52 -0.31
Bitterness -0.40 -0.02 -0.31 0.77*
Umami -0.11 -0.07 -0.31 0.43 0.72
Intensity -0.43 -0.18 -0.29 0.61 0.70 0.73*
Overall Preference -0.18 -0.53 -0.48 0.24 0.53 0.72 0.91**

Appearance Texture Sweetness Acidity Bitterness Umami Intensity
Appearance
Texture -0.70
Sweetness -0.24 -0.39
Acidity -0.24 -0.41 -0.26
Bitterness -0.88** -0.53 -0.41 0.53
Umami -0.11 -0.21 -0.51 0.00 -0.07
Intensity -0.04 -0.51 -0.75* 0.36 -0.07 0.50
Overall Preference -0.41 -0.89** -0.66 0.41 -0.35 0.23 0.78*

2019 SKC Flavor Correlations: All Breeding Tomatoes

Correlations could not be calculated for the Cherry Tomatoes market class because it contained too few varieties 
(only three tasting samples).

*** p < 0.01    **p < 0.05    *p < 0.10

2019 SKC Flavor Correlations: Cocktail Tomatoes

*** p < 0.01    **p < 0.05    *p < 0.10

2019 SKC Flavor Correlations: Orange Yellow Tomatoes

*** p < 0.01    **p < 0.05    *p < 0.10
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Appearance Texture Sweetness Acidity Bitterness Umami Intensity
Appearance
Texture -0.14
Sweetness -0.38 0.32
Acidity -0.12 0.46 -0.09
Bitterness -0.06 0.29 -0.02 -0.20
Umami -0.03 0.46* -0.32 -0.04 0.54**
Intensity -0.03 0.62** -0.19 -0.43 0.72*** 0.74***
Overall Preference -0.20 0.46* -0.45 -0.00 0.24 0.53* 0.44

Appearance Texture Sweetness Acidity Bitterness Umami Intensity
Appearance
Texture -0.17
Sweetness -0.03 -0.13
Acidity -0.65 -0.07 -0.43
Bitterness -0.27 -0.20 -0.95** -0.69
Umami -0.54 -0.48 -0.52 -0.35 -0.60
Intensity -0.24 -0.24 -0.15 -0.77 -0.34 0.32
Overall Preference -0.50 -0.54 -0.52 -0.86* -0.75 0.65 -0.44

Appearance Texture Sweetness Acidity Bitterness Umami Intensity
Appearance
Texture -0.17
Sweetness -0.03 -0.13
Acidity -0.65 -0.07 -0.43
Bitterness -0.27 -0.20 -0.95** -0.69
Umami -0.54 -0.48 -0.52 -0.35 -0.60
Intensity -0.24 -0.24 -0.15 -0.77 -0.34 0.32
Overall Preference -0.50 -0.54 -0.52 -0.86* -0.75 0.65 -0.44

Appearance Texture Sweetness Acidity Bitterness Umami Intensity
Appearance
Texture -0.23
Sweetness -0.87** 0.46
Acidity -0.61 0.16 -0.35
Bitterness -0.67 0.22 -0.47 0.20
Umami -0.49 0.23 -0.11 0.52 -0.58
Intensity -0.74* 0.04 -0.62 0.34 -0.85** 0.72*
Overall Preference -0.35 0.66 -0.64 0.36 -0.12 0.10 -0.34

2019 SKC Flavor Correlations:  Red Tomatoes (Field)

*** p < 0.01    **p < 0.05    *p < 0.10

2019 SKC Flavor Correlations: Red Tomatoes (High Tunnel Set 2)

*** p < 0.01    **p < 0.05    *p < 0.10

2019 SKC Flavor Correlations: Red Tomatoes (High Tunnel Set 1)

*** p < 0.01    **p < 0.05    *p < 0.10

2019 SKC Flavor Correlations: Red Tomatoes (High Tunnel Set 3)

*** p < 0.01    **p < 0.05    *p < 0.10
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Appearance Texture Sweetness Acidity Bitterness Umami Intensity
Appearance
Texture -0.45
Sweetness -0.45 0.35
Acidity -0.04 0.15 -0.50
Bitterness -0.14 0.46 -0.04 0.33
Umami -0.49 0.47 -0.13 0.45 -0.07
Intensity -0.44 0.59* -0.00 0.52* -0.71** 0.49
Overall Preference -0.25 0.65** -0.24 0.13 -0.01 0.73** 0.08

Appearance Texture Sweetness Acidity Bitterness Umami Intensity
Appearance
Texture 0.32
Sweetness 0.17 0.79***
Acidity 0.20 0.40** 0.12
Bitterness 0.21 0.66*** 0.54*** 0.32
Umami 0.12 0.65*** 0.56*** 0.17 0.62***
Intensity 0.25 0.85*** 0.71*** 0.46** 0.84*** 0.77***
Overall Preference 0.31 0.73*** 0.67*** 0.17 0.48** 0.71*** 0.63***

Appearance Texture Sweetness Acidity Bitterness Umami Intensity
Appearance
Texture -0.40
Sweetness -0.06 -0.92**
Acidity -0.42 -0.27 -0.00
Bitterness -0.54 -0.86* -0.66 -0.71
Umami -0.44 -0.76 -0.56 -0.82* -0.98***
Intensity -0.52 -0.16 -0.18 -0.89** -0.54 0.66
Overall Preference -0.42 -0.13 -0.40 -0.86* -0.38 0.48 0.73

2019 SKC Flavor Correlations: Pink Tomatoes (High Tunnel)

*** p < 0.01    **p < 0.05    *p < 0.10

Correlations could not be calculated for the Pink (Field) Tomatoes market class because it contained too few 
varieties (only four tasting samples).

2019 SKC Flavor Correlations: All Red Tomatoes

*** p < 0.01    **p < 0.05    *p < 0.10

2019 SKC Flavor Correlations: All Red Tomatoes (High Tunnel)

*** p < 0.01    **p < 0.05    *p < 0.10
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Appearance Texture Sweetness Acidity Bitterness Umami Intensity
Appearance
Texture -0.52
Sweetness -0.53 -0.82***
Acidity -0.20 -0.44 -0.44
Bitterness -0.39 -0.68** -0.33 -0.39
Umami -0.04 -0.50 -0.11 -0.56 -0.82***
Intensity -0.15 -0.21 -0.63* -0.20 -0.32 0.51
Overall Preference -0.35 -0.46 -0.80*** -0.02 -0.19 0.45 0.83***

Appearance Texture Sweetness Acidity Bitterness Umami Intensity
Appearance
Texture 0.43***
Sweetness 0.35*** 0.65***
Acidity 0.37*** 0.32*** 0.03
Bitterness 0.13 0.23** 0.04 0.18*
Umami 0.18* 0.41*** 0.44*** 0.24** -0.06
Intensity 0.40*** 0.70*** 0.71*** 0.37*** -0.10 0.65***
Overall Preference 0.44*** 0.68*** 0.70*** 0.30*** -0.03 0.45*** 0.74***

Appearance Texture Sweetness Acidity Bitterness Umami Intensity
Appearance
Texture -0.17
Sweetness -0.09 -0.68***
Acidity -0.14 -0.08 -0.26
Bitterness -0.35 0.71*** -0.46* -0.45*
Umami -0.34 -0.14 -0.13 -0.67*** -0.70***
Intensity -0.20 -0.40 -0.26 -0.64*** -0.12 0.59**
Overall Preference -0.03 -0.60** -0.47* -0.43* -0.02 0.53** 0.61**

Appearance Texture Sweetness Acidity Bitterness Umami Intensity
Appearance
Texture -0.31
Sweetness -0.28 -0.27
Acidity -0.42** -0.44** -0.26
Bitterness -0.17 -0.38* -0.45** 0.27
Umami -0.24 -0.30 -0.43** 0.22 -0.19
Intensity -0.57*** -0.72*** -0.60*** 0.34 -0.21 0.72***
Overall Preference -0.47** -0.74*** -0.63*** 0.39* -0.31 0.49** 0.83***

*** p < 0.01    **p < 0.05    *p < 0.10

*** p < 0.01    **p < 0.05    *p < 0.10

2019 SKC Flavor Correlations: SARE Project Tomatoes

2019 SKC Flavor Correlations: All Tomatoes (High Tunnel)

*** p < 0.01    **p < 0.05    *p < 0.10

2019 SKC Flavor Correlations: All Tomatoes (Field)

*** p < 0.01    **p < 0.05    *p < 0.10

2019 SKC Flavor Correlations: All Pink Tomatoes
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Appearance Texture Sweetness Acidity Bitterness Umami Intensity
Appearance
Texture 0.43***
Sweetness 0.35*** 0.65***
Acidity 0.37*** 0.32*** 0.03
Bitterness 0.13 0.23** 0.04 0.18*
Umami 0.18* 0.41*** 0.44*** 0.24** -0.06
Intensity 0.40*** 0.70*** 0.71*** 0.37*** -0.10 0.65***
Overall Preference 0.44*** 0.68*** 0.70*** 0.30*** -0.03 0.45*** 0.74***

Appearance Texture Sweetness Acidity Bitterness Intensity
Appearance
Texture -0.08
Sweetness -0.20 -0.56
Acidity -0.58 -0.13 -0.14
Bitterness -0.46 -0.3 -0.39 -0.58
Intensity -0.04 -0.56 -0.79** -0.1 -0.14
Overall Preference -0.32 -0.65 -0.94*** -0.06 -0.57 0.68*

Appearance Texture Sweetness Acidity Bitterness Intensity
Appearance
Texture 0.80**
Sweetness 0.32 -0.69*
Acidity 0.12 -0.60 -0.85**
Bitterness 0.18 -0.05 -0.51 -0.32
Intensity 0.43 -0.80** -0.96*** -0.83** -0.34
Overall Preference 0.80** -0.92*** -0.75* -0.60 -0.32 0.78**

Appearance Texture Sweetness Acidity Bitterness Intensity
Appearance
Texture -0.45
Sweetness -0.27 -0.63**
Acidity -0.19 -0.38 -0.41
Bitterness -0.2 -0.1 -0.45 -0.01
Intensity -0.28 -0.70*** -0.92*** -0.35 -0.32
Overall Preference -0.57** -0.75*** -0.77*** -0.08 -0.52* 0.73***

*** p < 0.01    **p < 0.05    *p < 0.10

2019 SKC Flavor Correlations: Large Butternut Squash

2019 SKC Flavor Correlations: All Butternut Squash

*** p < 0.01    **p < 0.05    *p < 0.10

2019 SKC Flavor Correlations: Mini Butternut Squash

*** p < 0.01    **p < 0.05    *p < 0.10

2019 SKC Flavor Correlations: All Tomatoes

*** p < 0.01    **p < 0.05    *p < 0.10
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Appearance Texture Sweetness Acidity Bitterness Intensity
Appearance
Texture -0.76*
Sweetness -0.48 -0.78*
Acidity -0.03 -0.05 -0.39
Bitterness -0.58 -0.90** -0.64 -0.31
Intensity -0.55 -0.71 -0.97*** -0.46 -0.56
Overall Preference -0.67 -0.80* -0.93*** -0.14 -0.54 0.93***

Appearance Texture Sweetness Acidity Bitterness Intensity
Appearance
Texture 0.33
Sweetness 0.82** -0.79**
Acidity 0.55 -0.00 -0.45
Bitterness 0.00 -0.23 -0.11 0.34
Intensity 0.76** -0.67* -0.87** 0.22 -0.2
Overall Preference 0.66 -0.84** -0.93*** 0.33 -0.22 0.92***

Appearance Texture Sweetness Acidity Bitterness Intensity
Appearance
Texture -0.53*
Sweetness -0.61** -0.77***
Acidity -0.32 -0.08 -0.16
Bitterness -0.19 -0.61** -0.38 0.16
Intensity -0.60** -0.70*** -0.89*** 0.11 -0.44
Overall Preference -0.62** -0.83*** -0.92*** 0.19 -0.44 0.90***

2019 SKC Flavor Correlations: All maxima Squash

*** p < 0.01    **p < 0.05    *p < 0.10

2019 SKC Flavor Correlations: Blue Green maxima Squash

*** p < 0.01    **p < 0.05    *p < 0.10

2019 SKC Flavor Correlations: Red Pink maxima  Squash

*** p < 0.01    **p < 0.05    *p < 0.10

167



Appendix G – k-Means Clustering and Cluster Determination 
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Harvest 
Date 

Taste 
Date Crop Code Variety Market Seed 

Source 
Location Management 

2019.09.10 2019.10.23 Carrot NVM Negovia Orange Bejo Seeds WMARS Field 

2019.09.10 2019.10.23 Carrot PSJ Dolciva Orange 
High 
Mowing WMARS Field 

2019.09.10 2019.10.23 Carrot IDP Adana Orange Bejo Seeds WMARS Field 

2019.09.10 2019.10.23 Carrot JXE Bolero1 Orange Johnny's WMARS Field 

2019.09.10 2019.10.23 Carrot HKJ Bolero2 Orange Johnny's WMARS Field 

2019.09.10 2019.10.23 Carrot XQM Napoli Orange Bejo Seeds WMARS Field 

2019.09.10 2019.10.23 Carrot XKA OSA Population 1 Orange CIOA WMARS Field 

2019.09.10 2019.10.23 Carrot DHF F3513 Orange CIOA WMARS Field 

2019.09.10 2019.10.23 Carrot RXI OSA Population 2 Orange CIOA WMARS Field 

2019.09.10 2019.10.23 Carrot GHK 
Uberlandia 
derivative 

Orange CIOA WMARS Field 

2019.09.10 2019.10.23 Carrot IKR Nb8524 Orange CIOA WMARS Field 

2019.09.10 2019.10.23 Carrot JVX Nb2159 Orange CIOA WMARS Field 

2019.09.10 2019.10.23 Carrot FXV F5367 Orange CIOA WMARS Field 

2019.09.10 2019.11.26 Carrot TRM U8277 Orange CIOA WMARS Field 

2019.09.10 2019.11.26 Carrot ZCL U9237 Orange CIOA WMARS Field 

2019.09.10 2019.11.26 Carrot ARX U8264 Orange CIOA WMARS Field 

2019.09.10 2019.11.26 Carrot BHE Nb8542 Orange CIOA WMARS Field 

2019.09.10 2019.11.26 Carrot PDM Brasilia Orange CIOA WMARS Field 

2019.09.10 2019.11.26 Carrot NVM F9241 Orange CIOA WMARS Field 

2019.09.10 2019.11.26 Carrot PSJ F8874 Orange CIOA WMARS Field 

2019.09.10 2019.11.26 Carrot IDP Nb8483 Orange CIOA WMARS Field 

2019.09.10 2019.11.26 Carrot JXE D1131 Orange CIOA WMARS Field 

2019.09.10 2019.11.26 Carrot HKJ Nb3271 Orange CIOA WMARS Field 

2019.09.10 2019.11.26 Carrot XQM U8272 Orange CIOA WMARS Field 
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Harvest 
Date 

Taste 
Date Crop Code Variety Market Seed Source Location Management 

2019.09.10 2019.11.06 Carrot ERP Purple Elite1 Purple Johnny's WMARS Field 

2019.09.10 2019.11.06 Carrot KHV Purple Haze1 Purple Johnny's WMARS Field 

2019.09.10 2019.11.06 Carrot OBE Purple Haze2 Purple Johnny's WMARS Field 

2019.09.10 2019.11.06 Carrot LPM P0114 Purple CIOA WMARS Field 

2019.09.10 2019.11.06 Carrot FJN Purple Elite2 Purple Johnny's WMARS Field 

2019.09.10 2019.11.06 Carrot SNH P6423 Purple CIOA WMARS Field 

2019.09.10 2019.11.11 Carrot NVM P9806 Purple CIOA WMARS Field 

2019.09.10 2019.11.11 Carrot PSJ P8390 Purple CIOA WMARS Field 

2019.09.10 2019.11.11 Carrot IDP P8390 Purple CIOA WMARS Field 

2019.09.10 2019.11.11 Carrot JXE P9804 Purple CIOA WMARS Field 

2019.09.10 2019.11.11 Carrot HKJ PR7300 Purple CIOA WMARS Field 

2019.09.10 2019.11.11 Carrot XQM PR5100 Purple CIOA WMARS Field 

 

170



 

 

 

 

 

 

 

171



Harvest 
Date 

Taste 
Date Crop Code Variety Market Seed 

Source Location Management 

2019.09.10 2019.11.11 Carrot TRM R7286 Red CIOA WMARS Field 

2019.09.10 2019.11.11 Carrot ZCL R7361 Red CIOA WMARS Field 

2019.09.10 2019.11.11 Carrot ARX R6637 Red CIOA WMARS Field 

2019.09.10 2019.11.11 Carrot BHE R6304 Red CIOA WMARS Field 

2019.09.10 2019.11.11 Carrot PDM R7294 Red CIOA WMARS Field 

2019.09.10 2019.11.06 Carrot NVM Red Samurai1 Red Territorial WMARS Field 

2019.09.10 2019.11.06 Carrot PSJ R6636 Red CIOA WMARS Field 

2019.09.10 2019.11.06 Carrot IDP Atomic Red1 Red Fedco WMARS Field 

2019.09.10 2019.11.06 Carrot JXE Atomic Red2 Red Fedco WMARS Field 

2019.09.10 2019.11.06 Carrot HKJ R5647 Red CIOA WMARS Field 

2019.09.10 2019.11.06 Carrot XQM Red Samurai2 Red Territorial WMARS Field 
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Harvest 
Date 

Taste 
Date Crop Code Variety Market Seed 

Source Location Management 

2019.09.10 2019.11.06 Carrot XKA Rainbow WhiteYellow Bejo Seeds WMARS Field 

2019.09.10 2019.11.06 Carrot DHF Y1246 WhiteYellow CIOA WMARS Field 

2019.09.10 2019.11.06 Carrot RXI W2383 WhiteYellow CIOA WMARS Field 

2019.09.10 2019.11.06 Carrot GHK Rainbow WhiteYellow Bejo Seeds WMARS Field 

2019.09.10 2019.11.06 Carrot IKR Y5655 WhiteYellow CIOA WMARS Field 

2019.09.10 2019.11.06 Carrot JVX Y6364 WhiteYellow CIOA WMARS Field 

2019.09.10 2019.11.06 Carrot FXV Y8873 WhiteYellow CIOA WMARS Field 

173



 

 

 

 

 

 

 

174



Harvest 
Date 

Taste 
Date Crop Code Variety Market Seed 

Source Location Management 

2019.07.19 2019.07.19 Cucumber XKA Tasty Green1 Asian High Mowing WMARS Field 

2019.07.19 2019.07.19 Cucumber DHF Suyo1 Asian Fedco WMARS Field 

2019.07.19 2019.07.19 Cucumber RXI 
Yamato 
Sanjaku 
Japanese 

Asian Hudson Valley WMARS Field 

2019.07.19 2019.07.19 Cucumber GHK Tasty Jade Asian Johnny's WMARS Field 

2019.07.19 2019.07.19 Cucumber IKR Suyo2 Asian Fedco WMARS Field 

2019.07.19 2019.07.19 Cucumber JVX Nokya Asian Johnny's WMARS Field 

2019.07.19 2019.07.19 Cucumber FXV Tasty Green2 Asian High Mowing WMARS Field 

2019.07.19 2019.07.19 Cucumber TRM Amour Pickling Bejo Seeds WMARS Field 

2019.07.19 2019.07.19 Cucumber ZCL Artist1 Pickling Bejo Seeds WMARS Field 

2019.07.19 2019.07.19 Cucumber ARX GherKing Pickling PanAmerican WMARS Field 

2019.07.19 2019.07.19 Cucumber BHE Excelsior Pickling Vitalis WMARS Field 

2019.07.19 2019.07.19 Cucumber PDM Artist2 Pickling Bejo Seeds WMARS Field 

2019.07.19 2019.07.19 Cucumber ZCN Bushy Pickling Seed Savers WMARS Field 

2019.07.19 2019.07.19 Cucumber LPB GY14 Pickling UW Wang Lab WMARS Field 

2019.07.19 2019.07.19 Cucumber CDQ GY14DM1 Pickling UW Wang Lab WMARS Field 

2019.07.19 2019.07.19 Cucumber WQB GY14DM2 Pickling UW Wang Lab WMARS Field 

2019.07.19 2019.07.19 Cucumber HKW GY14DM3 Pickling UW Wang Lab WMARS Field 

2019.07.19 2019.07.19 Cucumber NVM Manny1 Mini High Mowing WMARS Field 

2019.07.19 2019.07.19 Cucumber PSJ WI7204 Mini UW Wang Lab WMARS Field 

2019.07.19 2019.07.19 Cucumber IDP Manny2 Mini High Mowing WMARS Field 

2019.07.19 2019.07.19 Cucumber JXE WI7204DM2 Mini UW Wang Lab WMARS Field 

2019.07.19 2019.07.19 Cucumber HKJ Yildo1 Mini Bejo Seeds WMARS Field 

2019.07.19 2019.07.19 Cucumber XQM Yildo2 Mini Bejo Seeds WMARS Field 
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Harvest 
Date 

Taste 
Date Crop Code Variety Market Seed Source Location Management 

2019.06.26 2019.06.27 Lettuce XKA Joker Butterhead Wild Garden WMARS Field 

2019.06.26 2019.06.27 Lettuce DHF Alkindus Butterhead Vitalis WMARS Field 

2019.06.26 2019.06.27 Lettuce RXI Australe Butterhead High Mowing WMARS Field 

2019.06.26 2019.06.27 Lettuce GHK Crisp as Ice Butterhead Seed Savers WMARS Field 

2019.06.26 2019.06.27 Lettuce IKR Cindy Butterhead Adaptive Seeds WMARS Field 

2019.06.26 2019.06.27 Lettuce JVX Lovelock Butterhead Vitalis WMARS Field 

2019.06.26 2019.06.27 Lettuce FXV 
Manoa 
Leopard Butterhead Wild Garden WMARS Field 

2019.06.24 2019.06.24 Lettuce NVM Newham1 LittleGem Vitalis WMARS Field 

2019.06.24 2019.06.24 Lettuce PSJ 
Little Gem 
Pearl 

LittleGem Adaptive Seeds WMARS Field 

2019.06.24 2019.06.24 Lettuce IDP 
Pomegranate 
Crunch 

LittleGem Vitalis WMARS Field 

2019.06.24 2019.06.24 Lettuce JXE Pandero LittleGem Adaptive Seeds WMARS Field 

2019.06.24 2019.06.24 Lettuce HKJ Newham2 LittleGem Vitalis WMARS Field 

2019.06.24 2019.06.24 Lettuce XQM Ruby Zoisite LittleGem Wild Garden WMARS Field 

2019.06.24 2019.06.24 Lettuce CTQ 
Irene Green 
Gem 

LittleGem Wild Garden WMARS Field 
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Harvest 
Date 

Taste 
Date Crop Code Variety Market Seed 

Source 
Location Management 

2019.06.24 2019.06.24 Lettuce ERP Salanova Green 
Sweet Crisp 

OnecutGreen Johnny's WMARS Field 

2019.06.24 2019.06.24 Lettuce KHV 
Salanova Green 
Incised 

OnecutGreen Johnny's WMARS Field 

2019.06.24 2019.06.24 Lettuce OBE Eazyleaf Hampton OnecutGreen Vitalis WMARS Field 

2019.06.24 2019.06.24 Lettuce LPM 
Salanova Green 
Oakleaf1 

OnecutGreen Johnny's WMARS Field 

2019.06.24 2019.06.24 Lettuce FJN Salanova Green 
Butter 

OnecutGreen Johnny's WMARS Field 

2019.06.24 2019.06.24 Lettuce SNH 
Salanova Green 
Oakleaf2 OnecutGreen Johnny's WMARS Field 

2019.06.24 2019.06.24 Lettuce ITF Eazyleaf Ezrilla OnecutGreen Vitalis WMARS Field 

2019.06.24 2019.06.24 Lettuce VCJ Eazyleaf Eztron OnecutGreen Vitalis WMARS Field 

2019.06.24 2019.06.24 Lettuce ZCN Eazyleaf 
Burgandy1 

OnecutRed Vitalis WMARS Field 

2019.06.24 2019.06.24 Lettuce LPB 
Salanova Red 
Sweet Crisp OnecutRed Johnny's WMARS Field 

2019.06.24 2019.06.24 Lettuce CDQ 
Eazyleaf 
Burgandy2 

OnecutRed Vitalis WMARS Field 

2019.06.24 2019.06.24 Lettuce WQB 
Eazyleaf 
Brentwood 

OnecutRed Vitalis WMARS Field 

2019.06.24 2019.06.24 Lettuce HKW Salanova Red 
Incised 

OnecutRed Johnny's WMARS Field 

2019.06.24 2019.06.24 Lettuce TRM Eazyleaf Stanford OnecutRed Vitalis WMARS Field 

2019.06.24 2019.06.24 Lettuce ZCL 
Salanova Red 
Butter 

OnecutRed Johnny's WMARS Field 

2019.06.24 2019.06.24 Lettuce ARX Eazyleaf Ezbruke OnecutRed Vitalis WMARS Field 

2019.06.24 2019.06.24 Lettuce BHE Eazyleaf Boynton OnecutRed Vitalis WMARS Field 

2019.06.24 2019.06.24 Lettuce PDM Salanova Red 
Oakleaf 

OnecutRed Johnny's WMARS Field 
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Harvest 
Date Taste Date Crop Code Variety Market Seed 

Source 
Location Management 

2019.08.27 2019.08.28 Melon ZCN E25G.00488 Galia Vitalis WMARS Field 

2019.08.27 2019.08.28 Melon LPB E25G.00345_1 Galia Vitalis WMARS Field 

2019.08.27 2019.08.28 Melon CDQ E25G.00345_2 Galia Vitalis WMARS Field 

2019.08.27 2019.08.28 Melon ERP Iperione Cantaloupe Vitalis WMARS Field 

2019.08.27 2019.08.28 Melon KHV Savor Cantaloupe Johnny's WMARS Field 

2019.08.27 2019.08.28 Melon OBE Divergent1 Cantaloupe Vitalis WMARS Field 

2019.08.27 2019.08.28 Melon LPM Tirreno Cantaloupe Vitalis WMARS Field 

2019.08.27 2019.08.28 Melon FJN Spear Cantaloupe 
Seed 
Savers WMARS Field 

2019.08.27 2019.08.28 Melon SNH Divergent2 Cantaloupe Vitalis WMARS Field 

2019.08.27 2019.08.28 Melon ITF Triton Cantaloupe 
EarthWork 
Seed 

WMARS Field 

2019.08.27 2019.08.28 Melon XKA First Kiss1 Cantaloupe High 
Mowing 

WMARS Field 

2019.08.27 2019.08.28 Melon DHF 
Anna's 
Charentais Cantaloupe 

EarthWork 
Seed WMARS Field 

2019.08.27 2019.08.28 Melon RXI Dakota Sisters Cantaloupe 
Prairie 
Road 

WMARS Field 

2019.08.27 2019.08.28 Melon GHK True Love Cantaloupe 
High 
Mowing 

WMARS Field 

2019.08.27 2019.08.28 Melon IKR Dago Cantaloupe Seed 
Savers 

WMARS Field 

2019.08.27 2019.08.28 Melon JVX 
Orange 
Sherbet Cantaloupe 

High 
Mowing WMARS Field 

2019.08.27 2019.08.28 Melon FXV First Kiss2 Cantaloupe 
High 
Mowing 

WMARS Field 
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Harvest 
Date Taste Date Crop Code Variety Market Seed 

Source 
Location Management 

2019.09.06 2019.09.09 Pepper NVM King of the 
North 

Red Hudson Valley WMARS Field 

2019.09.06 2019.09.09 Pepper PSJ 
Early Red 
Sweet 

Red Turtle Tree WMARS Field 

2019.09.06 2019.09.09 Pepper IDP 
Wisconsin 
Lakes 

Red 
Nature and 
Nurture 

WMARS Field 

2019.09.06 2019.09.09 Pepper JXE Ace1 Red Johnny's WMARS Field 

2019.09.06 2019.09.09 Pepper HKJ Peacework Red Fruition Seeds WMARS Field 

2019.09.06 2019.09.09 Pepper XQM Ace2 Red Johnny's WMARS Field 

2019.09.06 2019.09.09 Pepper XKA Beachcraft1 Red Vitalis WMARS Field 

2019.09.06 2019.09.09 Pepper DHF Procraft Red Vitalis WMARS Field 

2019.09.06 2019.09.09 Pepper RXI E20B.30236 Red Vitalis WMARS Field 

2019.09.06 2019.09.09 Pepper GHK E20B.30136 Red Vitalis WMARS Field 

2019.09.06 2019.09.09 Pepper IKR Aristotle Red Seminis WMARS Field 

2019.09.06 2019.09.09 Pepper JVX Beachcraft2 Red Vitalis WMARS Field 

2019.09.06 2019.09.09 Pepper ZCN Flavorburst1 Yellow Bejo Seeds WMARS Field 

2019.09.06 2019.09.09 Pepper LPB Flavorburst2 Yellow Bejo Seeds WMARS Field 

2019.09.06 2019.09.09 Pepper CDQ Whitney Orange Bejo Seeds WMARS Field 

2019.09.06 2019.09.09 Pepper WQB 
Orange 
Marmalade 

Orange PanAmerican WMARS Field 

2019.09.06 2019.09.09 Pepper HKW E20B.30199 Yellow Vitalis WMARS Field 
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Harvest 
Date 

Taste 
Date Crop Code Variety Market Seed 

Source 
Location Management 

2019.09.06 2019.09.10 Pepper ZCN Golden 
Treasure 

Orange Seed Savers WMARS Field 

2019.09.06 2019.09.10 Pepper LPB Escamillo1 Yellow Johnny's WMARS Field 

2019.09.06 2019.09.10 Pepper CDQ Escamillo2 Yellow Johnny's WMARS Field 

2019.09.06 2019.09.10 Pepper WQB 
Lively Sweet 
Italian Orange 

Orange High Mowing WMARS Field 

2019.09.06 2019.09.10 Pepper HKW Lively Sweet 
Italian Yellow 

Yellow High Mowing WMARS Field 

2019.09.06 2019.09.10 Pepper NVM 
Stocky Red 
Roaster Red Wild Garden WMARS Field 

2019.09.06 2019.09.10 Pepper PSJ 
Early Perfect 
Italian 

Red Wild Garden WMARS Field 

2019.09.06 2019.09.10 Pepper IDP Gypsy Queens Red 
Adaptive 
Seeds 

WMARS Field 

2019.09.06 2019.09.10 Pepper JXE Karma1 Red Wild Garden WMARS Field 

2019.09.06 2019.09.10 Pepper HKJ Karma2 Red Wild Garden WMARS Field 

2019.09.06 2019.09.10 Pepper XQM 
John's Sweet 
Fry 

Red Seed Savers WMARS Field 

2019.09.06 2019.09.10 Pepper XKA STSDLS213 Red PanAmerican WMARS Field 

2019.09.06 2019.09.10 Pepper DHF Carmen1 Red Johnny's WMARS Field 

2019.09.06 2019.09.10 Pepper RXI Italian Sweet 
Fryer 

Red Seed Savers WMARS Field 

2019.09.06 2019.09.10 Pepper GHK Carmen2 Red Johnny's WMARS Field 

2019.09.06 2019.09.10 Pepper IKR 
Bridge to 
Paris1 

Red Hudson Valley WMARS Field 

2019.09.06 2019.09.10 Pepper JVX 
Bridge to 
Paris2 

Red Hudson Valley WMARS Field 

 n
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Harvest 
Date 

Taste 
Date Crop Code Variety Market Seed 

Source Location Management 

2019.08.14 2019.08.15 Tomato NVM SGLL.LG.1.17.1 Breeding SKC WMARS High Tunnel 

2019.08.14 2019.08.15 Tomato PSJ 45L23R.17.1 Breeding SKC WMARS High Tunnel 

2019.08.14 2019.08.15 Tomato IDP GGO4.F4.1 Breeding SKC WMARS High Tunnel 

2019.08.14 2019.08.15 Tomato JXE GGO4.F4.2 Breeding SKC WMARS High Tunnel 

2019.08.14 2019.08.15 Tomato HKJ SGTA.F4.4 Breeding SKC WMARS High Tunnel 

2019.08.14 2019.08.15 Tomato XQM SGPF.F3.1 Breeding SKC WMARS High Tunnel 

2019.08.14 2019.08.15 Tomato CTQ SGPF.F3.4 Breeding SKC WMARS High Tunnel 

2019.08.14 2019.08.15 Tomato XKA CSDE.F4.3 Breeding SKC WMARS High Tunnel 

2019.08.14 2019.08.15 Tomato DHF JBGG.F3.4 Breeding SKC WMARS High Tunnel 

2019.08.14 2019.08.15 Tomato RXI JBDE.F3.3 Breeding SKC WMARS High Tunnel 

2019.08.14 2019.08.15 Tomato GHK A6JB.F3.4 Breeding SKC WMARS High Tunnel 

2019.08.14 2019.08.15 Tomato IKR JBGG.F3.5 Breeding SKC WMARS High Tunnel 

2019.08.14 2019.08.15 Tomato JVX JBGG.F3.2 Breeding SKC WMARS High Tunnel 

2019.08.14 2019.08.15 Tomato FXV A6JB.F3.5 Breeding SKC WMARS High Tunnel 

2019.08.21 2019.08.22 Tomato NVM SGLL.SM.2.17.4 Breeding SKC WMARS High Tunnel 

2019.08.21 2019.08.22 Tomato PSJ 15H07.10.4.4 Breeding KCTomato WMARS High Tunnel 

2019.08.21 2019.08.22 Tomato IDP SGPF-F3-2 Breeding SKC WMARS High Tunnel 

2019.08.21 2019.08.22 Tomato JXE CSDE-F4-3 Breeding SKC WMARS High Tunnel 

2019.08.21 2019.08.22 Tomato HKJ 623 Breeding KCTomato WMARS High Tunnel 

2019.08.21 2019.08.22 Tomato XQM GGO4-F4-3 Breeding SKC WMARS High Tunnel 

2019.08.21 2019.08.22 Tomato XKA JBGG-F3-4 Breeding SKC WMARS High Tunnel 

2019.08.21 2019.08.22 Tomato DHF GGO4-F4-2 Breeding SKC WMARS High Tunnel 

2019.08.21 2019.08.22 Tomato RXI 08H02.EB911 Breeding KCTomato WMARS High Tunnel 

2019.08.21 2019.08.22 Tomato GHK 45L23-S2-16-1 Breeding SKC WMARS High Tunnel 

2019.08.21 2019.08.22 Tomato IKR SGLL-LG-1-17-1 Breeding SKC WMARS High Tunnel 

2019.08.21 2019.08.22 Tomato JVX JBGG-F3-5 Breeding SKC WMARS High Tunnel 
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Harvest 
Date 

Taste Date Crop Code Variety Market Seed Source Location Management 

2019.07.29 2019.07.30 Tomato TRM Siletz1 Red 
Adaptive 
Seeds 

WMARS High Tunnel 

2019.07.29 2019.07.30 Tomato ZCL Pilu KS Red Adaptive WMARS High Tunnel 

2019.07.29 2019.07.30 Tomato ARX 2330.1 Red PanAmerican WMARS High Tunnel 

2019.07.29 2019.07.30 Tomato BHE JTO1007 Red Johnny's WMARS High Tunnel 

2019.07.29 2019.07.30 Tomato PDM Siletz2 Red 
Adaptive 
Seeds 

WMARS High Tunnel 

2019.08.06 2019.08.07 Tomato NVM 
Mountain 
Merit 

Red Bejo Seeds WMARS High Tunnel 

2019.08.06 2019.08.07 Tomato PSJ EWS-TOM-
206 

Red EarthWork 
Seed 

WMARS High Tunnel 

2019.08.06 2019.08.07 Tomato IDP JTO1007 Red Johnny's WMARS High Tunnel 

2019.08.06 2019.08.07 Tomato JXE 2330.1 Red PanAmerican WMARS High Tunnel 

2019.08.06 2019.08.07 Tomato HKJ Siletz Red 
Adaptive 
Seeds 

WMARS High Tunnel 

2019.08.06 2019.08.07 Tomato XQM Pilu KS Red Adaptive 
Seeds 

WMARS High Tunnel 

2019.08.19 2019.08.20 Tomato XKA Pilu KS1 Red Adaptive WMARS High Tunnel 

2019.08.19 2019.08.20 Tomato DHF BW Hybrid Red 
University of 
Florida 

WMARS High Tunnel 

2019.08.19 2019.08.20 Tomato RXI JTO1007 Red Johnny's WMARS High Tunnel 

2019.08.19 2019.08.20 Tomato GHK Pilu KS2 Red Johnny's WMARS High Tunnel 

2019.08.19 2019.08.20 Tomato IKR Mountain 
Merit 

Red Bejo Seeds WMARS High Tunnel 

2019.08.19 2019.08.20 Tomato JVX Siletz Red Adaptive WMARS High Tunnel 

2019.08.19 2019.08.20 Tomato FXV 
EWS-TOM-
206 

Red 
EarthWork 
Seed 

WMARS High Tunnel 

2019.08.28 2019.08.30 Tomato XKA 2331.1_1 Red PanAmerican WMARS Field 

2019.08.28 2019.08.30 Tomato DHF 2331.1_2 Red PanAmerican WMARS Field 

2019.08.28 2019.08.30 Tomato RXI Galahad Red EarthWork 
Seed 

WMARS Field 

2019.08.28 2019.08.30 Tomato GHK Brandywise Red Fruition Seeds WMARS Field 

2019.08.28 2019.08.30 Tomato IKR 
Vitalis LB 
resistant 

Red Vitalis WMARS Field 

2019.08.28 2019.08.30 Tomato JVX W Hybrid Red 
University of 
Florida 

WMARS Field 

2019.08.28 2019.08.30 Tomato FXV 15H07.10.4
.4 

Red KCTomato WMARS Field 

2019.08.28 2019.08.30 Tomato ERP 
08H02.EB9
11 Red KCTomato WMARS Field 

2019.08.28 2019.08.30 Tomato KHV OSA404 Red OSA WMARS Field 

2019.08.28 2019.08.30 Tomato OBE Scotia Red Deep Harvest WMARS Field 

2019.08.28 2019.08.30 Tomato LPM 
Mountain 
Princess1 

Red High Mowing WMARS Field 

2019.08.28 2019.08.30 Tomato FJN 
Mountain 
Princess2 Red High Mowing WMARS Field 

2019.08.28 2019.08.30 Tomato SNH Aurora Red Adaptive WMARS Field 

2019.08.28 2019.08.30 Tomato ITF Starfire Red Adaptive  WMARS Field 
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Harvest 
Date 

Taste 
Date Crop Code Variety Market Seed 

Source Location Management 

2019.08.06 2019.08.07 Tomato TRM 2401 Pink PanAmerican WMARS High Tunnel 

2019.08.06 2019.08.07 Tomato ZCL BW Hybrid Pink 
University of 
Florida 

WMARS High Tunnel 

2019.08.06 2019.08.07 Tomato ARX Martha 
Washington1 

Pink Johnny's WMARS High Tunnel 

2019.08.06 2019.08.07 Tomato BHE 
Martha 
Washington2 Pink Johnny's WMARS High Tunnel 

2019.08.06 2019.08.07 Tomato PDM 
Chef's Choice 
Pink 

Pink Johnny's WMARS High Tunnel 

2019.08.28 2019.08.29 Tomato TRM A6 Pink Craig Grau WMARS Field 

2019.08.28 2019.08.29 Tomato ZCL A6TW-13 Pink Craig Grau WMARS Field 

2019.08.28 2019.08.29 Tomato ARX 
Council 
Bluff's 
Heirloom 

Pink Seed Savers WMARS Field 

2019.08.28 2019.08.29 Tomato BHE 15H08.4.3.4.1 Pink KCTomato WMARS Field 
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Harvest 
Date Taste Date Crop Code Variety Market Seed 

Source Location Management 

2019.08.28 2019.08.29 Tomato NVM 
DeWeese 
Streaked 

Orange 
Yellow Seed Savers WMARS Field 

2019.08.28 2019.08.29 Tomato PSJ 
Oma's 
Orange 

Orange 
Yellow 

Seed Savers WMARS Field 

2019.08.28 2019.08.29 Tomato IDP 665 
Orange 
Yellow 

KCTomato WMARS Field 

2019.08.28 2019.08.29 Tomato JXE 623 Orange 
Yellow 

KCTomato WMARS Field 

2019.08.28 2019.08.29 Tomato HKJ Sunrise Sauce 
Orange 
Yellow PanAmerican WMARS Field 

2019.08.28 2019.08.29 Tomato XQM Azoychka 
Orange 
Yellow 

Adaptive 
Seeds 

WMARS Field 

2019.08.28 2019.08.29 Tomato ZCN JTO1099_1 Cherry Johnny's WMARS Field 

2019.08.28 2019.08.29 Tomato LPB JTO1099_2 Cherry Johnny's WMARS Field 

2019.08.28 2019.08.29 Tomato CDQ Sungold Cherry Johnny's WMARS Field 

2019.08.28 2019.08.30 Tomato NVM Latah Cocktail 
Uprising 
Seeds WMARS Field 

2019.08.28 2019.08.30 Tomato PSJ SGLL4 Cocktail KCTomato WMARS Field 

2019.08.28 2019.08.30 Tomato IDP 45L23 Cocktail KCTomato WMARS Field 

2019.08.28 2019.08.30 Tomato JXE Red Racer Cocktail 
EarthWork 
Seed 

WMARS Field 

2019.08.28 2019.08.30 Tomato HKJ 
Mountain 
Magic Cocktail Bejo Seeds WMARS Field 

2019.08.28 2019.08.30 Tomato XQM RC Hybrid Cocktail 
EarthWork 
Seed 

WMARS Field 
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Harvest 
Date Taste Date Crop Code Variety Market Seed 

Source Location Management 

2019.09.26 2019.10.18 Squash ERP Havana Large Vitalis WMARS Field 

2019.09.26 2019.10.18 Squash KHV Waldo Large Johnny's WMARS Field 

2019.09.26 2019.10.18 Squash OBE Butterbush Large 
Seed 
Savers 

WMARS Field 

2019.09.26 2019.10.18 Squash LPM Waltham1 Large Johnny's WMARS Field 

2019.09.26 2019.10.18 Squash FJN Bugle Large Rupp WMARS Field 

2019.09.26 2019.10.18 Squash SNH Tiana Large Vitalis WMARS Field 

2019.09.26 2019.10.18 Squash ITF Waltham2 Large Johnny's WMARS Field 

2019.09.26 2019.10.18 Squash XKA Brulee Mini 
High 
Mowing 

WMARS Field 

2019.09.26 2019.10.18 Squash DHF 
Autumn 
Frost 

Mini 
PanAmeric
an 

WMARS Field 

2019.09.26 2019.10.18 Squash RXI Honeynut Mini High 
Mowing 

WMARS Field 

2019.09.26 2019.10.18 Squash GHK Hamilton Mini 
EarthWork 
Seed WMARS Field 

2019.09.26 2019.10.18 Squash IKR Butterbaby1 Mini 
PanAmeric
an 

WMARS Field 

2019.09.26 2019.10.18 Squash JVX Butterbaby2 Mini 
PanAmeric
an 

WMARS Field 

2019.09.26 2019.10.18 Squash FXV Butterscotch Mini Johnny's WMARS Field 
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Harvest 
Date Taste Date Crop Code Variety Market Seed 

Source Location Management 

2019.09.26 2019.11.13 Squash XKA Stella Blue1 
Blue 
Green 

Siskiyou 
Seeds 

Spooner Field 

2019.09.26 2019.11.13 Squash DHF 
American 
Indian 

Blue 
Green 

Seed Savers Spooner Field 

2019.09.26 2019.11.13 Squash RXI Sweet Fall Blue 
Green 

Seed Savers Spooner Field 

2019.09.26 2019.11.13 Squash GHK Stella Blue2 
Blue 
Green 

Siskiyou 
Seeds Spooner Field 

2019.09.26 2019.11.13 Squash IKR JWS 17-4547 
Blue 
Green 

Johnny's Spooner Field 

2019.09.26 2019.11.13 Squash JVX JWS 14-4069 
Blue 
Green 

Johnny's Spooner Field 

2019.09.26 2019.11.13 Squash ERP Red KuriSP Red Pink Vitalis Spooner Field 

2019.09.26 2019.11.13 Squash KHV Red KuriWM Red Pink Vitalis WMARS Field 

2019.09.26 2019.11.13 Squash OBE 
Orange 
SummerSP1 

Red Pink 
High 
Mowing 

Spooner Field 

2019.09.26 2019.11.13 Squash LPM 
Orange 
SummerSP2 

Red Pink 
High 
Mowing 

Spooner Field 

2019.09.26 2019.11.13 Squash FJN Orange 
SummerWM 

Red Pink High 
Mowing 

WMARS Field 

2019.09.26 2019.11.13 Squash SNH E30R.00056SP Red Pink Vitalis Spooner Field 

2019.09.26 2019.11.13 Squash ITF E30R.00056WM Red Pink Vitalis WMARS Field 
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Appendix H: 2019 SKC Stakeholder Survey Questions and Responses
2019 SKC Breeder/Seed Co. Survey: Summary Questions and Responses
How many years have you contributed varieties to the Seed to Kitchen trials (first year of trials was 2014)?
4 or more 3years 2years 1year

6 0 0 0

How important are the different parts of Seed to Kitchen in your decision-making?
Extremely important Very important Somewhat important Slightly important Not at all important

Connecting with UW researchers 1 2 2 0 1
Connecting with farmers 1 2 1 2 0
Connecting to breeders/seed cos. 1 2 1 1 1
Connecting to chefs 1 3 1 1 0
Research station data 3 1 0 1 1
Flavor data 4 1 1 0 0
Midwest on-farm trial results 2 0 2 1 1

How likely are you to share results of the Seed to Kitchen trials with someone in your organization?
Very likely Somewhat likely Not likely

5 1 0

Have you shared Seed to Kitchen trial results with any of the following people outside your organization? (Check all that apply)
Farmers Chefs Other breeders/seed cos. Other

2 1 1 seed distributor

How much do the Seed to Kitchen trial results affect your variety/selection decisions?
A great deal Moderately A little Not at all

0 4 1 1

How useful have the professional connections you have made through the trials been?
Extremely useful Very useful Somewhat useful Slightly useful Not at all useful

Connections with UW researchers 2 1 2 1 0
Connections with farmers 1 0 2 1 2
Connections to breeders/seed cos. 1 1 1 2 1
Connections to chefs 1 1 0 1 3

Have there been particular varieties where you feel Seed to Kitchen trials have been particularly useful in decisions about commercialization?
Yes No

4 2
If yes, which varieties?
Autumn Frost Squash
JWS 14-4069
Salvaterra's Select tomato
Italia pepper
John's Sweet Fry pepper

What do you think is the best part of Seed to Kitchen?
Detailed yield data, flavor analysis 
The connection of food to farmers to chefs and the practical partnerships
Connection to chefs
Getting comprehensive flavor data from chefs.
The broad number of farms engaged with trials
attending the field day

How would you rate your overall experience with the Seed to Kitchen trials?
Extremely satisfied Somewhat satisfied Neither satisfied or dissatisfiedSomewhat dissatisfied Extremely dissatisfied

3 2 0 1 0

How likely are you to continue to participate in the Seed to Kitchen Variety Trials?
Extremely likely Somewhat likely Neither likely nor unlikely Somewhat unlikely Extremely unlikely

4 1 0 1 0

Please list below any specific crops you would like to see added to the trials that are not currently included.
Herbs (basil)
Collards
onions
Melon
Watermelon

How many years have you been a plant breeder or working in the seed industry?
5

12
10

6
8
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Who are your primary customers?
Wholesale growers Market growers Home gardeners Retail seed companies Companies who license my varieties

1 3 4 4 0

What predominant geographic area are your customers in? (Can select multiple)
Global USA,MEX,CAN Midwest USA Northeast USA Northwest USA

2 2 1 1 1
How can Seed to Kitchen improve for breeders/seed companies?
increase the number of plants/rep in trials
Getting at least some data back to researchers more quickly (I know it's hard!)
The data results need to be collated and distributed more quickly.  Plot sizes are too small to feel confident in results (especially for the cucurbits, which often have just 4 plants/plot).  
Also, clarity during the submission process on how many locations the varieties will be planted.  This led to some surprises in the total entry fee at the end of year, when plots were 
included in Hancock that were not anticipated.
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2019 Chef Survey: Questions and Responses
How many years have you participated in the Seed to Kitchen trials (first year of trials was 2014)?
4 or more 3years 2years 1year

3 1 1 1

How did you first hear about Seed to Kitchen?
From a fellow chef Social media Attended a presentation Approached by university associateApproached by farmer

3 0 0 3 0

What parts of Seed to Kitchen were most motivating or important for you joining?
Extremely important Very important Moderately important Slightly important Not at all important

Connecting with fellow chefs 3 1 1 1 0
Connecting with local farmers/growers 5 1 0 0 0
Connecting with University researchers 3 2 1 0 0
Tasting different varieties of commercially available vegetables 5 1 0 0 0
Participating in the breeding process of new vegetable varieties 5 0 1 0 0

When it comes to tastings, which group is most exciting for you?
Extremely exciting Very exciting Moderately exciting Slightly exciting Not at all exciting

Varieties currently available to farmers 1 4 1 0 0
Varieties soon to be available to farmers (1-2 years from release)3 2 1 0 0
Early generations in breeding process (5-8 years from release) 2 4 0 0 0
Historic or heirloom varieties not available commercially 5 1 0 0 0

What has been a favorite experience or memory from your time working with Seed to Kitchen?

It is great to taste genetically different types of the same thing to really notice the nuances between varieties.
too many to narrow down. I have loved them all.
the carrot tasting at forequarter, the squash tasting at pifc and the pepper tasting at the ufc commissary. 

How much has participating with Seed to Kitchen affected the following:
A great deal A lot Somewhat A little None at all

Sourcing for your restaurant 2 0 2 2 0
Exposure/outreach for your restaurant 2 1 1 2 0
Understanding of plant breeding/variety development 2 4 0 0 0
Relationships with farmers 1 2 2 1 0
Relationships with other chefs 2 1 2 1 0
Relationships with plant breeders 2 1 3 0 0

Please tell how your participation with Seed to Kitchen has impacted you the most?

We have been buying over 80% of our product locally for 20 years so I'm excited to see some of our farmers involved.
learned so much about plant breeding and vegetable flavors. 

How often do you talk about your Seed to Kitchen participation with others?
Always Frequently Sometimes Occasionally Never

1 3 1 1 0

To whom do you mention your work with Seed to Kitchen?
Other chefs Farmers/growers Family and friends Produce sellers Other

5 4 5 3 0

How well is Seed to Kitchen doing when it comes to:
Extremely well Very well Moderately well Slightly well Not well at all

Communicating overall goals 0 4 1 0 0
Delivering relevant information 2 3 0 0 0
Monthly chef tastings 2 3 0 0 0
Farm to Flavor event 2 3 0 0 0

Meeting at the West Side Ag Center and walking through the fields. It was a pleasure seeing where all the varieties are grown. Loved taking all that produce back to the 
restaurant to play with. Additionally all the times someone drops off a big variety to our kitchen, it's one thing to taste the raw product and comment on the nuance, but to get 
to work with the different varieties and see how they respond to seasoning and cooking side-by-side is the real pleasure for me.

Anytime I am able to step out of the kitchen and connect with the source of our produce I become a slightly better chef. It has made me more conscientious and more dedicated 
to moving away form commodity farming.   
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Which of the following changes are most important for improving Seed to Kitchen for chefs going forward?
Extremely important Very important Moderately important Slightly important Not at all important

Tasting more breeding lines 2 1 2 0 0
Field trips to visit trials or farms 1 1 2 1 0
More information on variety history 3 1 1 0 0
More interaction with farmers 1 1 3 0 0
More interaction with breeders 2 0 3 0 0
Flavor wheel/lexicon development 0 2 2 0 1

Please give any details or other ideas you have as to how Seed to Kitchen can improve?

Other chefs including myself are confused by the wheel. I've been involved in tasting for the Slow Food Ark of Taste and the process was much clearer.

I think having more opportunity to cook with the produce and give feedback to the qualities as the product is cooked. While I can speculate how a vegetable will cook or respond 
to various preparations, until I get the vegetables in the kitchen I'm mostly guessing. 
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2019 Farmer/Grower Survey: Summary of Questions and Responses
How many years have you participated in the Seed to Kitchen trials (first year of trials was 2014)?
4 or more 3years 2years 1year

10 4 4 1

How satisfied are you with your overall experience working with Seed to Kitchen?
Extremely satisfied Very satisfied Somewhat satisfiedSlightly satisfied Not at all satisfied

4 12 2 1 0

How likely are you to continue participating in SKC trials?
Extremely likely Somewhat likely Neither likely nor unlikelySomewhat unlikely Extremely unlikely

11 6 2

Please share your favorite experience or memory as a member of Seed to Kitchen?
Ruth came and visited our farm a few years ago. It was interesting to chat with her.
We appreciated that we trialed some carrots we did not have interest in and have really found some gems
Meeting at events w/ other farmers and chefs to discuss successes and favorites
The excitement of receiving seed and looking at the varieties

Digging potatoes several years ago and being amazed at the variety within fingerling potatoes

Growing out F2 potatoes from actual seed and seeing the genetic variability within that family of plants.
I really love trying out new varieties that aren't on the market yet. 

Being invited to the tasting event at the end of the season. 

Doing taste trial on the farm with the crew was a blast and informed our variety choices for the following year. 
Discovering Badger Flame beets!

Which parts of Seed to Kitchen are most important to you as a participant?
Extremely important Very important Moderately importantSlightly important Not at all important

Connecting with UW researchers 6 8 3 1 1
Connecting to breeders/seed cos. 6 2 5 5 0
Connecting with other farmers 1 7 7 4 0
Connecting to local chefs 2 3 7 4 2
Seeing new and upcoming varieties 13 4 1 0 1
Sharing trial results 5 11 2 0 0
Seeing how varieties perform on your farm 12 6 1 0 0

How much has your experience working with Seed to Kitchen impacted your work?
A great deal Somewhat A little None at all

4 9 5 0

STK gave me the resources and reason to begin saving my own tomato seed. This was a first for me as a grower of 25 years.

I love trialing new varieties.  Because of seed trials I was introduced to Italian sweet peppers which are by far our favorite peppers now.  When I 
trialed beets some of my CSA members did a taste testing survey cooking the different varieties for a farm picnic. It was fun and I hope the member 
feedback was useful to SKC.

being able to start potatoes from seed, saving the tubers, planting them nest season, then having them used in UW trials (Ruth Genger)

I had a visit the first year from an administrator of the program. He was accompanied by a young graduate student associated with the program and 
she was delightful in her keen interest in the success of the project.

 The winter squash trial really inspired us in terms of the potential for new varieties, and exceptional flavors. This also gave us ideas and clarified 
some of our own priorities for the traits that suit our operation. 

Was proud to be able to donate over 30 lbs of produce to a local food pantry.  And totally enjoyed the seed to kitchen dinners. 

Best variety has been Orange Summer Red Kuri.  Was introduced to this variety through SKC.  Since introduction we now sell 5-10 thousand pounds 
every year to local grocers, restaurants and institutions.
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Which types of information are most influential for your decision-making on farm?
Extremely important Very important Somewhat importantSlightly important Not at all important

Trial results from your farm specifically 8 9 2 0 0
Trial results as a whole (from all farms + research station) 3 7 8 0 0
Other farmers' recommendation 3 11 5 0 0
Visits to research stations 2 1 8 5 2
January stakeholder meeting in Madison 0 2 3 6 8

How likely are you to share what you have learned with others? 
Very likely Somewhat likely Not at all likely

12 5 0

With whom are you most likely to share your experience with Seed to Kitchen? (Check all that apply)
Other farmers Local chefs Seed companies/breedersCustomers Friends and familyOther

16 10 4 9 8 2

Donors for non-profit

How useful have the different professional connections you have made through the trials been? 
Extremely useful Very useful Somewhat useful Slightly useful Not at all useful

Connections with farmers 2 3 9 5 0
Connections with UW researchers 2 10 4 3 0
Connections to breeders/seed cos. 2 3 6 3 5
Connections to chefs 1 3 5 2 8

Have you found new varieties that you are now using because of the Seed to Kitchen trials?
Yes No

16 1

Please list which varieties of which crops you are now using as a result of the Seed to Kitchen trials.
Various carrots and potatoes 
Damsel tomato, Adana carrot, Carmen pepper
a few hot pepper varieties especially
red endeavor potato, papa cacho potato, sweet yellow dumpling potato
Carmen and Bridge to Paris peppers
Some as yet unnamed potato varieties, tasty jade cucumber.
various potatoes and kale
borega beets, cortland onion, daisy gold potato, Havana butternut squash, various Japanese cukes
Nutterbutter winter squash. Another one that I can't remember.
Butternut Squash--Autumn Frost, French Melon--D'artagnon, Corno di Toro Pepper--Escamillo

Salt and pepper cucumbers, White beets
Badger Flame beet, Chocolate Sprinkles cherry tomato, Damsel tomato, Magic Molly potato, Newham Little Gem lettuce
Orange Summer-Red Kuri

Yes No
5 12

I do many more of my own trials now

We've started being more intentional about variety traits, flavor and explore new varieties r
Modified my HH tomatoes because of a field day visit, done more farm crew taste trails
I've changed some spacings for lettuce and potatoes

Have you made any other changes on your farm based on Seed to Kitchen trials or connections you've made through the trials? (If yes, please tell 
what you've changed)

Visitors to farmstay B&B, Soil Sisters Wisconsin, students in organic gardening classes

Blush red onion, Cortland yellow onion, Escamillo peppers, Napoli carrots, Daisy Gold and Aylesbury Gold potatos (and probably others I can't bring 
to mind)
Badger flame, Boro, heatless habanero (Numex Suave Orange?), Tiana, Pomegranate Crunch, Spretnak, sugarloaf variety (Virtus?)

Last year I grew russets for the first time. Honestly, I never thought that I'd like them so much.  They grew exceptionally well.
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How well is Seed to Kitchen doing when it comes to the following:
Extremely well Very well Moderately well Slightly well Not well at all

Communicating trial results 3 12 3 0 1
Addressing relevant crops for trialing 2 12 4 1 0
Sending trial materials in spring (seeds, etc.) 5 9 4 0 1
Making data collection easy 2 12 4 0 1

How many years have you been farming? 
6

13
27
33
25
24

8
40
13

5
12
27
40
10
40

9
5

In your operation, how many acres are dedicated to vegetable production each year? (estimation is fine)
2

5.65
4.5

2
1
4
1
1

0.75
1
2
2

12
0.2

2.5
5
2

12
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What is your farm's plant hardiness zone (for example, locations in WI range from 3a to 5b)?
5a
3b/4a
5a
5b
5b
3b
4
4b
4a
5a
5b
4
5b
4b (I think...)
4
5b
3
5b
5

What are your primary markets?
Farmers market CSA Restaurant Local grocery Wholesale

9 7 9 6 4

What would you change to improve Seed to Kitchen?
More seed for certain crops
trial result reporting - I haven't tried the app yet - I bet that will be much easier
Happy as things are

Some bugs still need to be worked out of the Seedlinked interface for entering data but otherwise, SKC is awesome
Receiving seeds sooner. Last year I recieved my onion seeds a month after I had started my other onions.
separate farmers from local gardeners in results and S2K data; your survey questions relate to farmers
not a thing. this is a well-run program. I appreciate the honest, hands-on approach.
Our farm is a few hours west of Madison so participating in off farm events is a challenge.

Resources/networking for people not farming in Madison area. 
More on farm visits by researchers
More varieties from major breeders.  There are a lot of new varieties that I would like to see included.

Slightly more communication (and slightly more in advance) about expected dates for meetings, variety-choosing deadlines, expected seed delivery 
times, etc.

skip the platforms that load poorly in rural areas, find interesting open-pollinated varieties, send seeds in time for greenhouse propagation prior to 
transplant, especially where season is short

I would like to choose my trials, and know how many different seeds come with each trial, MUCH earlier in the process. My plan is finished in 
December. If I don't know which seeds I'm getting until March or April, I have to go back and change my plan in the middle of planting season to 
accommodate the new seeds. 
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