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ABSTRACT

The soil water characteristic curve (SWCC) relates soil volumetric water
content, 0, to soil matric potential, y, and is used to estimate soil hydraulic
parameters such as field capacity (FC) and hydraulic conductivity that are critical
inputs to environmental models. Quantifying the SWCC is time consuming and
expensive, and property-transfer models are one approach to estimating the
SWCC from more easily obtained soil properties. The objectives of this research
were 1) to investigate the differences between laboratory and in situ
measurements of the SWCC on a well-structured silt loam soil, 2) examine the
ability of property-transfer models to predict the SWCC, and 3) evaluate the effect
of different FC estimations taken from various SWCC measurement approaches
on the nitrous oxide (N20) emissions predicted by DayCent, a widely used
process-based, biogeochemical ecosystem model. Measurements were conducted
in three systems: the corn phases of a corn-soy rotation (CS2) and a corn
followed by three years of alfalfa rotation (CS4), and a rotationally grazed pasture
(CS6) at the Wisconsin Integrated Cropping Systems Trial (WICST) in southern
Wisconsin, USA. Laboratory measurements reported greater 0 for a given s than
in situ measurements, and differences in 6 were greatest at {s near zero. We
believe that these differences arose because of hysteresis and air entrapment, as
field soils never reached the water contents experienced in the laboratory. The
CNEAP property-transfer model, which does not account for soil structure,

predicted greater 0 at a given { than the Nimmo (1997) property-transfer model,
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which accounts for soil structure. The Nimmo model showed closest agreement
with the laboratory measured SWCC, suggesting it is important to incorporate
soil structure into property-transfer predictions of the SWCC in this well-
aggregated silt loam soil. When FC was defined as the 6 at y)=33 kPa, laboratory-
derived FC estimates ranged from 28 to 32% and in situ derived FC estimates
ranged from 23-24% across the treatments. Using FC estimates derived from in
situ SWCC (23, 24%) led to underestimations of 6 at 15 cm by the DayCent model
compared to observed 0. Laboratory derived FC estimates (28, 32%) resulted in
slightly better 6 predictions by DayCent, however differences were not striking.
DayCent simulated cumulative N20 emissions over the growing season were 1.5-
2.3x greater when a laboratory-derived FC was input to DayCent rather then an
in situ derived FC, but all simulated N2O emissions were of the same order of
magnitude of previously measured N20 emissions at WICST. These results
suggest that how SWCC are determined and the hydraulic parameters that are
estimated from SWCC can significantly influence modeled processes that depend
on soil water status, highlighting the importance of the fundamental SWCC
relationship and questioning the validity of assumptions surrounding the classic

paradigm of field capacity.



iii
ACKNOWLEDGEMENTS

An overwhelming thank you goes to Bill Bland, who has been thoughtful,
patient, accessible, and always willing to ponder a problem with me. Bill taught
me many things over the course of my degree, from the technical to the abstract,
and I am very grateful.

Thank you to my committee members: Matt Ruark, who provided
excellent feedback; Francisco Arriaga, who answered my many questions,
thought about soil water processes with me at length, and helped me construct
tools and instruments in the lab; Nick Balster, who provided big-picture
perspective and helped me to develop as a public speaker.

Special thanks goes to several students and researchers that graciously
gave their time: Clay Vanderleest lent his expansive instrumentation knowledge;
Mingwei Yuan discussed results and was a wonderful sounding board of ideas;
Melanie Stock was always willing to talk soil physics and processes; Gregg
Sanford provided project design feedback; Alex Butz and James Tesmer answered
many calls from the field and assisted with whatever problems arose; Jimmy
Sustachek helped with sampling; Dr. Sarah Collier played a large role in shaping
this project and contributed the laboratory data to the analysis; Richard Gaillard
generously ran the model simulations and answered any modeling questions.
Thank you to the researchers and administrators involved in the Dairy CAP grant

by which this work was funded.



iv
Friends and family that have supported and encouraged me, thank you. A

final thanks and dedication to my father, Jamie McNamee, who died in November
2015. He was my greatest advocate and biggest challenger, always inspiring me
with his unquenchable excitement, enthusiasm, and delight in the joys of every

day.

Age quod agis.



TABLE OF CONTENTS
ABSTRACT .eiiiiiismssmssnsssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssassassnssassassassssnssnsess i
ACKNOWLEDGEMENTS......coiiimsumssmsamssmssmssssssssssssssssssssassssssssasssssssssssssssssssssassssssssssssssassssassass il
LIST OF TABLES AND FIGURES .......ccioiimmnmsmsnssnesesssnssssssssssssssssssssssssssssssssssssssssssnss vi
INTRODUCTION.....coicmimsmsmssmssnssssssssssssssassssssssssssssssssssssssssssssssssssassnsssssssssssssssssssssssssssassassassnsas 1
LITERATURE REVIEW ......oooiiiiinmninnenmssmsmsssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssassnsas 2
The Soil Water Characteristic Curve (SWCC) ......ccommmmsmmsmsmmsmssssmssssmssssmsssssssssssssssssssssasssssssns 2
Measuring the Soil Water Characteristic CUIVe......ccummmmmmmsmssmsssssssssssssssns 4
Prediction and Estimation of the Soil Water Characteristic Curve ........ccoconinnsesnsesnnanas 8
The Use of SWCC in Climate Models ......ccoummmnmsmsnmmsmsmissssssssssssssssssssssssssssssssssssssssssssss 17
OBJECTIVES ...ooiiiiiisnssnmssssssssssssssssssss s sssss s s s ssssssssssss sas sssssssssssssnsssssssssssssssnssnsans 20
MATERIALS AND METHODS......cooiimmmsmsmssssmsssssssssssssssssssssssssssssssssssssssssssssssssssssssses 22
Y L D LTl ) 010 22
SWCC MeQSUIEMENT ....cveriiisrimisismisssmisssssssss s sss s sas st sas s sassssassssssss s asmsassnsans 23
SWCC MOde] INPULS ..coureriursmssrsmssmsmssmsmssssssssssssssssssssssssssssssssssssssssssssassssssssssssssasssssssssssssssssnssssnssssnsans 31
DayCent Model SIMulations.......cmmmmmmmsmssssssssssssssss s 34
2 DY 1 T 36
Volumetric Water CONTENL ... ssssssssssssssss s sssassseses 36
MEASUTEA SWCC ..uueereismsassesmssssssss s s s e ssss s st s e m s e E e e e nR 36
CNEAP and Nimmo Model Data INPULS......ccourismmemsmssmsmssmsmssssmssssssssssssssssssssssssssssssssssssssssssssasans 38
SWCC Model PrediCtionsS...ocuicmsssimesmsssssssssssssssssssssssssssssssssssssssssssssssssssssasssssssssssssssssassssssssnss 39
Sensitivity of SWCC Models t0o INPULS .....cccvvmnmnmnmsmssmsmmsssmssssmsssssssssssssssssssssssssssssssssssssssssssasans 40
Comparisons of Measured and Modeled SWCCS........ccommsmmmsmmmsmssmssssmsssssssssssssssssssssassssasans 44
DayCent Simulations of 0 and N20 EMiSSIONS .....ccucummsmmsmsmmsmsmmsmsmmsmssmsssssssssssssssssssssssssssasans 45
| Y 1 0] 0 49
MEASUTEA SWCC ..uueereismsassesmssssssss s s s e ssss s st s e m s e E e e e nR 49
SWCC Model PrediCtionsS....oicmmssimesmsssssssssssssssssssssssssssssssssssssssssssssssssssssasssssssssssssssssassssssssnss 53
Comparisons of Measured and Modeled SWCCS........ccovmmmmsmmmsmssmssssmsssssssssssssssssssssassssasans 57
DayCent Simulations of 0 and N20 EMiSSIONS .....ccucsmmsmmmsmmsmsmmsmsmmsmssnssssssssssssssssssssssssssssasans 58
CONCLUSION.c..ctitimsmsssssssssssnsssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssassassnsssssssssssssssssssssns 63

REFERENCES......co s sssssss s ssss s sssasssssassssssassnnss 100



vi

LIST OF TABLES AND FIGURES

Table 1: Management detailS ... sssssessessesssssesns 66
Table 2: Bulk density and field capacity specifications in DayCent.........cceruurneen. 67
Table 3: RMSE of DayCent simulated vs. observed soil water content.................. 67
Table 4: r of DayCent simulated vs .observed soil water content.......c.ooueereennenn. 67
Table 6: Slope of DayCent simulated vs. observed soil water content. ................. 68

Table 7: Y-Intercept of DayCent simulated vs. observed soil water content...... 68

Figure 1: Field-collected 6 measurements and factory calibration ... 69
Figure 2: 15 and 25 cm 0 calibration........cccccveviiiiniceien e e .69
Figure 3: 45 and 70 cm 0 calibration..........ccccoecieriiien v 70
Figure 4: Soil water content 0 and rainfall over the growing season.........ccuu.... 71
Figure 5: Soil water characteristic curves derived from in situ data at 15 cm... 72
Figure 6: Soil water characteristic curves derived from in situ data at 25 cm... 72
Figure 7: Soil water characteristic curves derived from in situ data at 45 cm... 73
Figure 8: Soil water characteristic curves derived from in situ data at 70 cm... 73
Figure 9: Example of the hysteretic behavior seen in the measurements............ 74
Figure 10: Measured and modeled SWCC for the CS2 treatment at 15 cm.......... 75
Figure 11: Measured and modeled SWCC for the CS2 treatment at 25 cm.......... 78
Figure 12: Measured and modeled SWCC for the CS2 treatment at 45 cm.......... 81
Figure 13: Measured and modeled SWCC for the CS2 treatment at 70 cm.......... 84
Figure 14: Particle size diStriDUtion ... sssesesesessssees 87
Figure 15: Average GMR determined by wet and dry ASD.......comnenennennenerneenens 88
Figure 16: Average GSD determined by wet and dry ASD .......cmnneennesrenerneenens 88
Figure 17: Bulk density measurements made at WICST- 15 and 45 cm............... 89
Figure 18: CNEAP model sensitivity t0 o parameter........oenenensesnesesessesnees 90
Figure 19: Nimmo model sensitivity to changes in bulk density ........ccccoccevererennee. 90
Figure 20: Nimmo model sensitivity to variations in GMR........cccooumnenrenrererneennns 91
Figure 21: Nimmo model sensitivity to variations in GSD .......cccumnenrenresreneeneenens 91
Figure 22: Nimmo model sensitivity to SIEVE SIZES. ....cuunenrerrererrerneessrneeseessesessessessens 92
Figure 23: GMR and GSD in Nimmo sieve sensitivity test. ... 93
Figure 24: CS2 DayCent simulated soil water content at 15 cm depth.................. 94
Figure 25: CS4 DayCent simulated soil water content at 15 cm depth.................. 95
Figure 26: CS2 DayCent simulated vs. observed soil water contents.........ccccvueue.. 96
Figure 27: CS4 DayCent simulated vs. observed soil water contents.........ccccuueue.. 97
Figure 28: DayCent simulated cumulative N20O emiSSions......c.coenenessessesesneenens 98

Figure 29:

CNEAP model and the Nimmo model components........c.couererererreereens 99



INTRODUCTION

Soil hydraulic parameters, such as soil volumetric water content, matric
potential, and unsaturated hydraulic conductivity, are necessary to quantify
water flow and mass transport through the soil (Kosugi et al., 2002). The
relationships between these hydraulic parameters becomes especially important
in model simulations, where many processes (e.g. chemical transport to
groundwater, greenhouse gas emissions, and plant water uptake) are dependent
on soil water dynamics. The estimation of soil hydraulic parameters must be
accurate, and as climate models simulating important drivers of change on our
planet continue to develop, it is critical that these inputs and relationships are
correct.

This research focused on the soil water characteristic curve (SWCC), a
fundamental soil hydraulic relationship that informs ecosystem models.
Measurement and estimation approaches for the SWCC were reviewed, with
particular attention to the inclusion of soil structural properties and pore space
in SWCC property-transfer models. Measurements of the SWCC were conducted
on a well-aggregated, silt loam, prairie-derived soil in south-central Wisconsin
and compared to SWCC predictions. Finally, the different hydraulic parameter
estimates from measured and predicted SWCC were used in the biogeochemical

model DayCent to test how these approximations influence model outputs.



LITERATURE REVIEW

The Soil Water Characteristic Curve (SWCC)

The soil water characteristic curve (SWCC) relates soil matric potential §
to volumetric water content 6. Matric potential is the result of capillary and
adsorptive forces of the soil on the water present binding to the water and
lowering its potential energy (Hillel, 2004). Matric potential is expressed here in
units of force per unit area, kilopascals (kPa). Matric potential is always negative
in unsaturated material, approaching zero as the soil becomes more saturated.
The terms matric “suction” or “tension” are the positive equivalents of matric
“potential” (i.e. the absolute values) (Hillel, 1998). Matric “suction” will be used
here to convey matric potential in order to avoid using a negative sign, which
makes graphing on log scales impossible.

At matric suctions equal to zero, 0 is equal to the saturated water content
0s. While saturation implies that all of the pore space in the soil is filled with
water, it is rare that 05 is equal to the porosity ®, due to entrapped air in the soil
(Kosugi et al., 2002). The 6 may also stay at 6 for values of s slightly greater than
zero. The s at which the initial decrease in 6 from 6 occurs is the air-entry
suction Pae (Kosugi et al., 2002). At this point, also known as the threshold of
desaturation, enough suction to empty the largest pore is applied, and the water
in that pore is replaced by air (Hillel, 1998). The air-entry value is typically small
in coarse textured or well-aggregated soils with large pores, as the larger pores

will drain under smaller suctions, and is typically larger in finer textured or
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poorly aggregated soils, where greater suctions are required to drain the smaller
pores (Hillel, 1998).

As matric suction increases, the pores in the soil matrix are drained of
water. Large pores empty first, as the capillary and adsorptive forces in these
pores are less than in smaller pores. In the dry (high) matric suction range, 6
decreases asymptotically approaching the residual water content 6.. Historically,
0r was used because measurement techniques could not measure these low
water contents, so the models assumed 6 approached a specific value (Kosugi et
al., 2002). Today, the significance of 6, is debated; some argue that 6, is the
wetness left in smaller soil pores that don’t have a continuous network (Hillel,
1998), while others state that theoretically 6 goes to zero as s approaches
infinity, and in practice 6: is just a fitting parameter in SWCC models (Kosugi et

al., 2002). The 6 is sometimes represented as effective saturation Se:

(e_er)
SRR GEIA

Desorption and sorption, or drying and wetting, are the two ways to
create a continuous curve between  and 0. Typically these curves will be
different for the same soil; the equilibrium 6 will generally be larger in a drying
curve then a wetting curve for a given . This phenomenon is known as
hysteresis: the equilibrium water content at a given matric suction is dependent

on the previous process (sorption or desorption) (Hillel, 1998).
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Measuring the Soil Water Characteristic Curve

Measurement methods

The SWCC is constructed from paired soil matric suction and water
content measurements over a wide range of matric suctions (typically 0 kPa to
plant wilting point, 1500 kPa). Measuring the SWCC is difficult, as no lab or field
instruments cover the full plant available water suction range accurately.
Typically, laboratory measurements of 6 and { are collected in pairs after a
known suction has been applied to a soil sample and the sample 6 reaches a static
equilibrium (Dane and Hopmans, 2002). “Equilibrium” is commonly determined
as the point at which 6 remains constant. In reality, 6 could stop decreasing for
reasons other than reaching equilibrium, such as a very low hydraulic
conductivity or confined soil pores preventing water loss. The applied
equilibrium concept is a potential source of error in the incremental SWCC
measurement techniques.

Common laboratory techniques for measuring the SWCC include the
hanging water column/suction plate method, pressure plate extractor, the dew
point method, and the evaporation method, (Dane and Hopmans, 2002; Schelle et
al,, 2013). These methods are precise at different matric suction ranges and are
chosen based on available time, resources, and study intent. In the low suction
range, the SWCC is predominately influenced by the soil structure, so
undisturbed samples are typically used in measurements that cover the wet end

of the SWCC (Dane and Hopmans, 2002). At larger suctions, the SWCC is believed



to be influenced by soil texture and not structure, hence disturbed soil samples
are commonly used (Schelle et al.,, 2013).

In the hanging water column method, undisturbed saturated samples are
placed on a porous plate, the pores of which are filled with water that is in
hydraulic contact with bulk water. A known negative pressure is applied through
a hanging water column to the sample (via the porous plate), causing water to
flow out of the sample until equilibrium is reached (Dane and Hopmans, 2002).
Suctions of 0-85 kPa can be measured. The volumetric water content of the
sample is determined by weighing before and after oven drying, multiplying the
gravimetric water content by the soil bulk density, and dividing by the density of
water (usually assumed to be 1 g cm-3). Sample equilibrium can take a long
period of time (1-3 weeks), and only one sample can be run at a time per hanging
water column. This one-sample problem is avoided with the use of a suction
table, which operates on the same basic principles (Dane and Hopmans, 2002).

Another technique that is precise in the wet end of the SWCC is the
evaporation method. Undisturbed soil samples are saturated, installed with two
tensiometers, and weighed regularly as soil water evaporates from the top
surface of the sample (Schindler et al., 2010b). Water content is calculated at the
end of the analysis period by oven drying the sample and converting gravimetric
water content to volumetric water content. This results in many retention
measurements. The HYPROP (UMS, Munich, Germany) is a commercial device

that uses the evaporation method to determine the SWCC, and was used in this
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research. Applying the extended evaporation method to the HYPROP method,

suctions from 0 to 100-300 kPa can be measured (Schindler et al., 2010b; a).

With a pressure plate extractor, soil samples (usually disturbed) are
packed in 1-cm high rings, saturated, and drained while in contact with a porous
plate. A known air pressure is applied to the samples and they are drained to
equilibrium. The samples are then weighed to determine 6, replaced on the
extractor, and a larger pressure is applied. This process is repeated for the
desired amount of SWCC points. Pressure plates can measure suctions 0 to 500-
1500 kPa, depending on the ability to apply that much pressure, and
measurements become less precise in the drier range. Errors arise from poor
contact between the samples and the porous plate as the samples dry (Dane and
Hopmans, 2002). This limited area of contact greatly slows water outflow from
the sample, causing apparent equilibrium before it has occurred.

The dew point method measures very high matric suctions. In a sealed
chamber, the liquid water in a soil sample is equilibrated with the vapor water in
the air above the sample (Scanlon et al., 2002). The dew point of the air and the
sample temperature are measured and used to calculate relative humidity, which
is used to calculate total potential using the Kelvin equation (Schelle et al., 2013).
Water content is determined gravimetrically with oven drying and converted to
volumetric water content with a field measured bulk density. In this research, the
dew point method is employed with the WP4C PotentiaMeter (Decagon Devices,

Inc., Pullman, WA). The WP4C provides precise measurements from
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approximately 5,000-316,000 kPa. The precision is approximately 0.5 kPa, so for

error to be less then 10%, samples need to be drier then 500 kPa (Decagon
Devices, Inc., 2015).

Field, or in situ, techniques for measuring the SWCC are a combination of
matric suction measurements and soil water content measurements made side
by side. Matric suction is commonly measured with a tensiometer, which
measures suctions from 0-80 kPa. Water content is frequently measured by time

domain reflectometry (TDR) or frequency domain reflectometry (FDR) probes.

Comparisons of measurement methods

Many studies have compared laboratory and field measurements of the
SWCC to one another (for example, Basile et al., 2003; Schelle et al., 2013;
Schindler et al., 2015). Schelle et al. (2013) compared the four laboratory
measurements described above for eight different soil types with a wide
variation in texture. The authors found that the suction table data and HYPROP
data had comparable SWCC in the wet-moderate suction range, while the
pressure plate tended to over-estimate water contents. In the moderate moisture
range there was good agreement among replicates when using the HYPROP, and
a wide range in equilibrium water contents among suction table samples,
speaking to the consistency of the HYPROP results. However, the HYPROP
replicates diverged towards saturation, likely because the heterogeneous soil
structure was not captured by the 250-cm3 sample size (Schelle et al., 2013).

The authors also observed a hysteretic effect when using disturbed
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samples in the WP4C that were dried or wet-up over time. This effect was most
pronounced in the finer textured soils (Schelle et al., 2013). HYPROP and WP4C
data are often used in conjunction to determine the entire SWCC curve. The
drying-curve WP4C data were a better continuation of the HYPROP measured
end of the curve then the wetting-curve WP4C data. However, the wetting-curve
is easier to measure, and if WP4C measurements are used with HYPROP data for
soils where hysteresis is still prominent in the dry end of the SWCC, the
inconsistencies or connection between the two ends of the curve may be more
pronounced (Schelle et al., 2013).

Basile et al. (2003) compared field measurements and laboratory
(evaporation method) measurements. From suctions of 0-10 kPa, the evaporation
method SWCC had higher 6 then the in situ curve, and the two curves converged
as suction increased. The authors argued that the difference between laboratory
and field measurements could largely be explained by hysteresis and trapped air;
each curve was a different hysteretic branch, and if differences in experimental
conditions were minimized, laboratory and field curves looked more similar

(Basile et al., 2003).

Prediction and Estimation of the Soil Water Characteristic Curve

As described above, the SWCC is notoriously difficult and time consuming
to measure. In order to reduce these difficulties, a number of different models

have been developed to predict or estimate the SWCC from available water
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retention data or more-easily measured soil properties. These SWCC estimates or
predictions are frequently employed in simulation models of landscape scale
processes. Some of these SWCC models are completely empirical, most are
parametric, and some have a physical or theoretical basis. The most prominent

models are described below.

Parametric and empirical models
Historically, the SWCC has been described using empirically-based
parametric models (Haverkamp et al.,, 2002). Equations for the curve are fit to
volumetric water content and matric suction data (Leong and Rahardjo, 1997).
The components of the SWCC described above (85, Yae, 6r) may be included in
these functions as physically based parameters, along with dimensionless
parameters that are determined empirically (Kosugi et al., 2002).
Common examples of such equations are Gardner (1958) and Brooks and
Corey (1964). Brooks and Corey (1964)is one of the most widely adopted early
models:
Se(®) = W/ Pae)? for < g,
Se=1 foryp = g,
This power function relates 6 to s for Y<yr.c using a dimensionless parameter A
that reflects the pore size distribution index, and the air entry suction ya.(Kosugi
et al.,, 2002). The <y, limitation results in a discontinuity at the air entry value,
which provides challenges when used in numerical modeling (Assouline and Or,

2013).
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The van Genuchten (1980) is perhaps the most widely used empirically

based parametric model today:

s er
[1+ (—ap)r]™

0@) =6, +

The sigmoidal expression uses three empirical parameters (o, n, and m)
determined using least squares fitting procedures to soil 6 and s data. The 6s and
0r may also be fitted or set. Although van Genuchten (1980) does not explicitly
have the air entry suction included in the model like Brooks and Corey (1964)
does, the inverse of a is proportional to the air entry suction (Kosugi et al., 2002).
In many adoptions of the model the number of parameters is reduced by
assuming that m = 1-(1/n). This model has been shown to be a good fit for many
soil types, especially near saturation, but is less accurate at dry water contents.
The advantage of van Genuchten (1980) near saturation increased its popularity
among modelers (Assouline and Or, 2013).

Extensive lab and field measurements are required to create a SWCC using
empirical methods. This can be time and resource intensive, and the
extrapolations of these equations to specific soil types can be unrealistic

(Haverkamp et al., 2002).

Models relating particle size distribution to pore sizes and the SWCC
The continuous SWCC is difficult to measure, and this has increased efforts
to develop models that relate easily measured soil properties to the SWCC. These

models are known as property-transfer models (not to be confused with
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pedotransfer functions which will be addressed shortly), and soil texture, particle
size distribution (PSD), and bulk density data are the most frequently used soil
properties.

Many physically based models adopt the shape similarity hypothesis that
the cumulative PSD and the SWCC have the same fundamental shape (Haverkamp
et al.,, 2002), a theory supported by the analysis of Haverkamp et al. (1988) of 600
soils in the GRIZZLY soil database. This highlights the important role of soil
texture in determining the shape of the SWCC. The role of soil structure in
determining the SWCC is estimated with dry bulk density in early models. In
many models, particle size is related to a local pore size through the particle
radius and assumptions regarding pore and particle shape, such as cylindrical
pores and spherical particles (Haverkamp et al., 2002). Pores are then related to
matric suction through the equation of capillarity (R = C./{ where typically
Cc=130 pum-kPa and R is the pore radius) (Nimmo et al., 2007).

The Arya and Paris (1981) model and the Haverkamp and Parlange
(1986) model are two popular physically-based SWCC prediction strategies. The
Arya-Paris model uses cumulative PSD and bulk density data to estimate the
SWCC. The cumulative PSD is divided into class fractions with an average particle
size and weight. Soil particles are assumed to be spherical, pores are assumed to
be cylindrical, and the bulk density (and therefore porosity) of the soil is applied
to all particle size fractions uniformly. The authors derive a nonlinear

relationship between mean pore radius R of a particle size fraction i and mean
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particle diameter D:

0.5

1 [2en;'™@
Ri = EDL 3

where e is the void ratio (ratio of porosity to volume of solids), n is the number of
particles, and a is an empirical parameter intended to correct for the tortuosity of
soil pores. This parameter was determined experimentally and a value of 1.38 is
commonly adopted. The mean pore radius R; is then related to matric suction
through the capillarity equation. Corresponding 6 for each particle size class are
calculated from the cumulative pore volume, assuming that pore volumes are
filled with water and accumulated beginning with the smallest particle size
fraction. The resulting 6 and s data to predict the SWCC is discrete and limited by
the number of particle size classes that were used to determine the PSD (Arya
and Paris, 1981).

Haverkamp et al. (2002) outline four problems, assumptions, or
inconsistencies inherent in the Arya-Paris model. First, saturated water content is
equal to the total porosity, a condition that is rarely observed in the field, and
occurs because the model does not account for air entrapment in the soil.
Therefore the Arya-Paris model tends to overestimate 0 in the wet-end of the
SWCC. In well-aggregated soils, the overestimation of 6 may also be attributed to
the inability of dry bulk density to capture the influence of structure on the
SWCC. Secondly, the proposed average a=1.38 value is determined from a small
number of soils, and is applied uniformly to all particle size fractions. Research

suggests that a should vary with particle size fraction, and it has been found that
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a varies not just based on soil type, but by water content as well. Additionally,
hysteresis is not accounted for in the model. Lastly, the Arya-Paris model has an
inherent compatibility problem. The assumption that the porosity of the soil is
uniform across particle size fractions, or the constant partial porosity hypothesis,
means that the cumulative pore fraction can be set equal to the cumulative
distribution of particle weights, which the Arya-Paris model does. In order for
this to be true, however, the pore radius R; must be directly proportional to the
particle diameter D;. The Arya-Paris model does not use a linear relationship
between R; and D; because of the inclusion of the tortuosity parameter a as an
exponent (see above equation), violating this assumption (Haverkamp et al.,
2002). The Arya-Paris model is therefore not completely sound from a theoretical
basis.

The Haverkamp-Parlange (1986) model is similar to the Arya-Paris model
in that it assumes shape similarity between cumulative PSD and the SWCC and
uses dry bulk density to estimate structural contributions. However the
Haverkamp-Parlange is a continuous function (instead of discrete points) that
also accounts for hysteresis (Haverkamp et al., 2002). It is only reasonable for
sandy soils and soils with weak structure (Assouline and Or, 2013), so it will not
be elaborated on here.

Nimmo et al. (2007) improved upon Arya and Paris (1981) in a model the
authors refer to as the continuous-function equivalent of the Arya-Paris model, or

CNEAP:
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where M(r) is differentiated from the cumulative PSD Mcum(Tr), mo is the standard
mass (1 g, used for unit consistency), and py is the particle density. The authors
adjusted Arya- Paris (1981) into the continuous function CNEAP to eliminate the
interval-size dependence. The CNEAP and Arya-Paris (1981) models produce
near identical results (Nimmo et al., 2007).

There are additional models that relate PSD to pore size and the SWCC
that are based on different fundamental assumptions about particle-pore
relationships (see Assouline and Or, 2013). These are not applied here, and

therefore will not be elaborated on.

Models accounting for structure effects in the SWCC

The property-transfer models described above appear to account for the
role of texture in the SWCC, but the role of structure is not fully captured. The
Nimmo (1997) model attempts to remedy this issue by accounting for structural
properties of the soil in the SWCC. Nimmo (1997) hypothesizes that volumetric
water content is the sum of a textural component and a structural component, as
is porosity. Porosity is therefor separated into textural porosity ®: and structural
porosity ®s, where & + ®; = @, the total porosity. Two distinct models are used
to calculate each component, and the SWCC is predicted from the sum of the

models (Nimmo, 1997). The Arya-Paris model is used to estimate the textural
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water content component based on PSD with the porosity set to a texture-
associated porosity of 0.3. The textural pore space is assumed to be random, or
“non-structured”, therefore @ is set to 0.3 based on theory and observations of
the porosity of randomly structured materials (Nimmo, 1997). The structural
water content component is estimated using aggregate size distribution (ASD)
data and the remaining (structural) porosity in a manner analogous to the
textural component. These two components are summed across { for the total
SWCC (Nimmo, 2002).

More specifically, the structural component of Nimmo (1997) is
determined by relating aggregate size to pore size, pore size to capillary radius,
and capillary radius to matric suction. The ASD data are fit to the lognormal
distribution of Gardner (1956) to determine the geometric mean radius (GMR)
and geometric standard deviation (GSD) of the soil aggregates. In relating
aggregate size to pore size, the model applies the scaling of the relation of the
pore radius to aggregate radius using the void ratio, but also incorporates a ratio
B of pore body size to pore opening size, as the s at which a pore empties
depends on the radius of the pore opening, not the pore body. Theory and
observation suggest f=2.2 (Nimmo, 1997). Further, the author argues that
aggregates fit together more tightly than soil particles because aggregates can be
formed in place and are more malleable, therefore interaggregate pores are
longer and perhaps narrower in soil with more uniformity (i.e. a well-aggregated

soil). The GSD of the ASD is used as an index of aggregate size variability that
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represents the tightness of fit of aggregates, where 0 indicates perfectly tight

fitting and 1 indicates a random, loose fit between soil aggregates. Applying these
adjustments and capillary theory relates aggregate radius ragg to a matric
pressure s by:

C
T'agg (¢) = o’nl/'fll)

where C= 0.13 mm kPa-! (from capillary theory- for small contact angles and
surface tensions 10% less then pure water), 8 is the ratio of pore body radius to
pore opening radius, o is the GSD in inverse natural log units, and s is the
structural void ratio (®s/(1-®s) . This relationship assumes that interaggregate
pores have a circular cross-section, when in fact because these pores are likely
narrow, they may have a more elongated shape (Nimmo, 1997). The aggregate
radius rggg is normalized with the GMR and GSD and the result is a cumulative
lognormal distribution function relating s to the structural water content

(Nimmo, 2002):

0; =

log7agg logr,,, —log GMR)?
f exp —( &Tagg & ) dlogragg

\W 2(log0)?
[t is important to note that ASD measurements are not well standardized
(Di1az-Zorita et al., 2002), so ASD data can be less reliable than particle size
distribution data (Nimmo, 2002). However, Nimmo (2002) points out that the
Nimmo model SWCC is less sensitive to GMR and GSD then other model inputs,

suggesting that the effect of variable ASD measurement techniques has less

weight on the resulting SWCC, at the very least.
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As a result, the Nimmo model is most appropriate for well structured,
well-aggregated soils, and it fits data in these cases better than the Arya-Paris
model alone (Nimmo, 2002). In weakly structured, weakly aggregated soils,
however, the structural component has less influence on soil water content, and

so the Nimmo model is not as appropriate (Nimmo, 2002).

Pedotransfer Functions and Additional Models

Pedotransfer functions (PTFs) are empirical and statistical functions that
relate simple soil properties to the SWCC. Properties typically used are bulk
density or porosity, organic carbon content, soil texture, and penetration
resistance. Many times the data used to calibrate PTFs is from a specific location,
so extrapolation of these relationships to other locations can cause significant
errors. PTFs can provide reasonable initial estimates for large scale analyses
(Assouline and Or, 2013).

There are more models for the SWCC that fall outside the scope of this
research analysis. They include fractals and percolation theory, accounting for

angular pores, and applying pore scale statistics (Assouline and Or, 2013).

The Use of SWCC in Climate Models

Ecosystem and biogeochemical models are used to simulate flows of
carbon, nutrients, and gas exchange in terrestrial systems. The CENTURY model
operates on a monthly time step to simulate changes in soil organic matter, plant

development, and nutrient availability due to alterations in land management
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and climate. The DayCent model is the daily time step version of CENTURY,

adjusted to a daily time step in order to more accurately simulate nitrogen gas
emissions, which depend on nonlinear relationships in daily processes (Del
Grosso et al., 2011). DayCent is used to estimate nitrous oxide (N20) emissions
from agricultural systems for the Inventory of the U.S. Greenhouse Gas Emissions
and Sinks that is compiled by the U.S. Environmental Protection Agency and
reported to the United Nations in accordance with the Framework Convention on
Climate Change (Del Grosso et al., 2011; U.S. Environmental Protection Agency,
2016). The accuracy of the N20 emissions estimated by DayCent are therefore
valuable from not only a scientific lens, but a policy perspective as well.

The land surface submodel used in DayCent simulates daily soil water
dynamics and temperature fluxes in the soil (Parton et al., 1998). The user
specifies the number and thickness of soil horizons and soil properties for each
layer. The soil properties include texture, bulk density, wilting point, field
capacity, the extent that water content can drop below wilting point, root
fraction, organic matter fraction, saturated hydraulic conductivity, and pH (Del
Grosso et al., 2011). It has been suggested that if time series soil water content
data are available, field capacity and wilting point be estimated by maximum 6
one to two days after rainfall and minimum 6 during dry period, respectively (Del
Grosso et al., 2011). Alternatively, it is suggested that these inputs be estimated
from pedo-transfer SWCC functions, and the authors recommend Saxton and

Rawls (2006) which uses soil texture and organic matter content data. DayCent
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represents the saturated flow of water through the soil profile with
unidirectional downward flow, where water fills a soil layer to saturation before
moving into the next layer, and layers exceeding field capacity 6 are drained to
the layers below. Unsaturated flow is bidirectional using Darcy’s law to compute
the water flux between adjacent soil layers (Parton et al., 1998).

A nitrogen gas flux submodel is used in DayCent to simulate N,O
emissions. This submodel assumes that both nitrification and denitrification
processes contribute to N2O soil emissions, and emissions are calculated as a
function of a number of soil properties, including water filled pore space (WFPS)
and soil texture (Parton et al., 2001). The WFPS at a given time is determined

from bulk density (p») and ©:

WFPS =
1 - (pp/2.65)

where 1-(pp/2.65) is equivalent to soil porosity ® and 2.65 is the assumed
particle density in g cm-3. Hence, the WFPS is sensitive to bulk density inputs, as
bulk density determines the pore space that is available to be filled with water.
Further, the user-specified field capacity and wilting point parameters affect how
WFPS is allocated over time. In the simulation of denitrification, when WFPS <
55%, no denitrification is assumed to occur, and when 55% < WFPS < 90%
denitrification increases exponentially and levels off as WFPS approaches
saturation (Parton et al., 2001). In the simulation of the nitrification model, the
effect of WFPS is related to nitrification based on empirical data and changes

depending on soil texture (Parton et al., 2001). Changes in 6, and therefore WFPS,
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are regulated by the land surface submodel, which includes field capacity and
bulk density inputs. In this analysis we explore the sensitivity of the DayCent
model to field capacity and bulk density parameters through changes in
simulated 6 and N20 emissions. As mentioned previously, soil hydraulic
properties like the SWCC, which field capacity is estimated from, are difficult to
measure and predict, and may result in different DayCent predictions depending

on the method employed.

OBJECTIVES
The overall goal of this study was to assess alternative methods for
estimating the SWCC in a prairie-derived, cultivated silt loam Wisconsin soil, and
the implications of differences that arose in estimated SWCC for downstream
applications of this fundamental descriptor of soil water behavior. Specific
objectives included:
1) Investigate differences between laboratory and in situ measurements

of the SWCC on a well-structured, silt loam soil.

2) Examine the ability of property-transfer models to predict the SWCC
compared to measured (in situ and laboratory) data, with particular
attention to the importance of accounting for soil structure. The CNEAP
texture-based model (the updated version of Arya-Paris, 1981) and the
Nimmo (1997) structure-texture model are used to investigate this

difference.
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3) Evaluate the effect of field capacity estimations from the

methodological differences determining the SWCC (in situ, laboratory,
and property-transfer models) on the output of ecosystem models like
DayCent, which model greenhouse gas emissions to inform policy

decisions.
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MATERIALS AND METHODS

Site Description

The study was conducted at the Wisconsin Integrated Cropping Systems
Trial (WICST) at the University of Wisconsin’s Arlington Agricultural Research
Station in Arlington, Wisconsin (43° 18’ N, 89° 21’ W) during the 2014 and 2015
growing seasons. The soil was a Plano silt loam (fine-silty, mixed, superactive,
mesic Typic Argiudoll). The mean annual temperature at Arlington was 7.7°C and
mean annual precipitation was 912 mm (1985-2015, National Weather Service).
In 2015, mean annual temperature was 8.1° C and annual precipitation was 993
mm. Over the 2015 growing season (May-September), the average temperature
was 18.5° C and precipitation was 527 mm (National Weather Service, 2016).

The WICST was a long-term trial established in 1990 to compare six
different cropping systems: three forage-based and three cash-grain based. The
trial was a randomized complete block design with four replicates. All phases of
each system were present every year, plots were 0.3 ha in size, and operations
were conducted with commercial farm-scale equipment. Since the establishment
of WICST, management has changed as necessary to remain current with best
management practices and technological advancements (Posner et al., 2008).

This study examined the soil water characteristic curve (SWCC) of three of
the WICST systems: the cash-grain corn-soybean system (CS2), the conventional
dairy forage system (CS4, corn followed by three years of alfalfa), and the

rotationally grazed pasture system (CS6). These particular systems were chosen
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in order to capture a range of agricultural practices common to Wisconsin dairy
agroecosystems. Due to instrumentation costs, measurements were limited to the
third replicate of WICST, and only the corn phase of CS2 and CS4 systems.
Rotation CS2 was strip-tilled in the fall prior to corn (Zea mays L.), and soybeans
[Glycine max (L.) Merr.] were planted using a no-till drill, while CS4 was chisel-
plowed in the fall, prior to corn and prior to alfalfa seeding. The corn in both CS2
and CS4 received commercial fertilizer at the recommended rates, and in CS4
cattle manure slurry was applied in the fall prior to corn and first year alfalfa
seeding. Weeds were chemically controlled in CS2 and CS4. Rotation CS6 was
seeded with a mixture of red clover (Trifolium pratense L.) with a no-till drill,
timothy (Phleum pratense L.), smooth bromegrass (Bromus inermis L.), and
orchardgrass (Dactylis glomerata L.), and was rotationally grazed by six heifers

per plot (Table 1).

SWCC Measurement

Volumetric Water Content

Soil volumetric water content (8) was measured with CS616 frequency
domain reflectometers (FDRs) in each plot (Campbell Scientific Inc., Logan, Utah).
The CS616s were installed horizontally at 15, 25, 45, and 70 cm depths. To
minimize field disturbance during the growing season, CS616s were installed at
45 and 70cm depths (one at each depth in CS4 and CS6, two at each depth in CS2)

April 22-23 2015 prior to field operations. Three CS616 probes were installed at
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15 and 25 cm depths June 24-30 after planting and side-dressing in order to

avoid instrument damage from field machinery.
CS616 Reflectometer Calibration

The CS616 reflectometer outputs the period (in microseconds) of an
electromagnetic pulse that is sent along its metal rods. The velocity of the
electromagnetic pulse is dependent on the dielectric permittivity of the material
(in this case soil, water, and air) surrounding the rods. Water has a higher
dielectric permittivity than soil and air, which slows the electromagnetic pulse,
and so a relationship between output period and 6 can be constructed (Campbell
Scientific, Inc., 2016). The output period is converted to 6 using a calibration
equation. The manufacturer’s factory calibration equation is:

0 = —0.0663 — 0.0063 * period + 0.0007 * period?

Vaz et al. (2013) found that the factory-supplied calibration works well for
arange of 6, 0-0.15 m3 m-3, but significantly overestimates 6 greater than 0.15 m3
m-3, We also found this to be the case (Figure 1). Vaz et al. (2013) developed a
CS616 probe calibration using seven mineral soils varying in texture. The authors
conducted this calibration in the laboratory using containers packed with dry
soil. Water was incrementally added to reach a target 0. Every time water was
added the soil was thoroughly mixed, repacked to a similar bulk density, and
measured for 6 and the period using the CS616. The calibration that Vaz et al.

(2013) suggested for mineral soils is:

6 = —0.5783 + 0.1527,/period
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An on-site calibration of the CS616 probes was conducted in summer
2015. Sixteen probes were installed just north of the CS2 treatment, four probes
at each of the four depths (15, 25, 45, and 70 cm) for calibration. Two pits were
dug and two sets of probes were installed in the opposite sides of each pit, and
then the pits were filled with soil. Bulk density samples (7.5 cm diameter x 7.5 cm
height) were taken over the field season at each probe depth (three per depth per
sample time, eight sample times in total). When taking samples, the soil was
excavated to 3.75 cm above the measurement depth (e.g. 11.25 cm for a 15 cm
deep measurement; 66.25 cm for a 70 cm deep measurement) and carefully
sampled for bulk density. When excavating, an area approximately 80 x 40 cm
was cleared to the proper depth in order to minimize compaction from sampling
in the shallower depths. The gravimetric water content was determined by
weighing samples before and after oven drying at 105°C for three days. This was
multiplied by the bulk density over the density of water (assumed to be 1 g cm3)
to arrive at the volumetric water content 6. This was considered the true water
content. While bulk density samples were being taken, the set of CS616 probes
closest to the sampling area were connected to a CR1000 datalogger (Campbell
Scientific Inc., Logan, UT) and the probe period was recorded every ten minutes
for approximately sixty minutes. Little to no variation was observed in the probe
period during the sampling time. Period verses true water content was graphed
in order to determine an in situ calibration curve for the moisture probes. Despite

careful sampling timing over the season, only a limited range of 6 was captured,
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and therefore the field calibration curves do not have a large enough range in
period to be confidently used to establish a calibration curve on their own
(Figure 1).

While the field measured 6-period data could not be used to determine an
entire new calibration curve, the data from 15 and 25 cm matched reasonably
well with what is predicted using the Vaz et al. (2013) calibration (Figure 2)
within the limited range that 8-period data was collected. This calibration was
adopted for these depths. The field measured 6-period data from 45 and 70 cm
depths were lower than the Vaz et al. (2013) calibration predicts. This could be
due to the increased clay content and bulk density at these depths (Campbell
Scientific, Inc.,, 2016), although the soils used by the authors for this calibration
included those with clay contents as high as 30%, which is the extreme found at
WICST. The same functional form as the Vaz et al. (2013) calibration
(6=a+b*Vperiod) was used for 45 and 70 cm depths, but the calibration curve
was fitted (in MATLAB 2014b) using the field measured 0-period data from 45
and 70cm (Figure 3). None of the calibration equations were forced through a
zero point because we wanted to avoid any uncertainty that accompanies
assuming the period at which 6 equals zero. Further, the range of periods
measured in the field over the growing season was relatively small (26-34 pS at
45 cm; 32-36 uS at 70 cm) and close to the periods measured in the calibration

data. The final calibrations used were:

15+25cm: 8 = —-0.5783 + 0.1527 * /period
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45+70cm: 6 =-0.4166 + 0.1171 * /period

Suction Measurements

Soil suction was measured using “Jet-fill” tensiometers (Model 2725ARL;
Soil Moisture Equipment Corp., Goleta, CA). Tension was measured and recorded
by pressure transducers, either Soil Moisture Equipment Corp. (Model 5301;
Goleta, CA) or Omega Engineering Inc. (Model PX209-30VAC5V; Stamford, CT).
An airtight seal between pressure transducers and tensiometers was assured by
o-rings, Teflon thread tape, pipe sealant, and silicon sealant. Two tensiometers
(one with each pressure transducer type) were installed at each of the 4 depths
in each plot next to moisture probes.

At installation (June 26-July 2, 2015), a 2.25 cm diameter hole was
augered so the midpoint of the tensiometer’s porous cup would be at the 15, 25,
45, or 70 cm depth and perpendicular to the soil surface. The tensiometer body
was connected to the porous cup, filled with degassed water, and placed upright
in a bucket of water for approximately ten minutes to saturate the porous cup.
Tensiometers were topped off with water, pumped with a hand-pump to remove
bubbles from the pressure transducer connection, and the “Jet-fill” cap was
attached. A slurry was made with water and soil removed from the augered hole.
This was poured into the hole to ensure good contact between the soil and the
tensiometer. The tensiometer was inserted and space around the tensiometer
was backfilled and packed tightly to avoid preferential flow.

Tensiometer water level was checked frequently throughout the season
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(minimum 2x/week). If the water level was low, tensiometers were refilled with
de-gassed water and hand-pumped to remove bubbles. If there was only an air
bubble at the top of the tensiometer body, the tensiometer was refilled using the
“Jet-fill” top or hand-pumped. Times of tensiometer servicing were recorded in
order to be removed from the final data.

All instruments (tensiometers and CS616s) were connected to a CR1000
datalogger and an AM16/32B multiplexer (Campbell Scientific, Inc., Logan, UT).
Measurements were taken every 30 seconds and 20-minute averages were
recorded July 2-October 14, 2015. Instruments were removed on October 14

before harvest.

In Situ Soil Water Characteristic Curves

In situ soil water characteristic curves (SWCC) were constructed using the 6
and | data described above. A set of rules was used in order to systematically
identify and summarize dry down periods from the continuous data. The 6 and
measurements were graphed over time and dry down periods that occurred over
the season were identified according to the following criteria:

1. Decrease in 0 over time: initial identifications of dry downs were made
from the 6 data when 6 begins to decrease. End point was when 6 begins
to increase.

2. Corresponding { measurements for the same time period were selected.

3. Dry down period began when 0 decrease and { increase.

4. Daily 6 and s values were represented by the average of 5:00-6:00 AM
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(four data points).
5. Iftensiometer readings were < -80 kPa the measurement was not
included.
Dry down periods were identified at each depth, and approximately 6-7 dry
down periods were found at the shallower depths. The amount of dry down
periods measured decreased with depth as the range of water contents
experienced decreased. These dry down periods were used to construct soil

water characteristic curves for each depth and plot.

Laboratory SWCC

The wet end of the SWCC was measured in the laboratory with the
evaporation method using a HYPROP device (UMS, Munich, Germany). The dry
end of the SWCC was measured using the dewpoint method with the WP4C
PotentiaMeter (Decagon Devices, Inc., Pullman, WA).

Soil sampling for laboratory measurements was conducted July 16-18,
2014. Samples were collected at two locations per plot, 10 and 30 meters from
the edge of the plot either north or south of the WICST central access drive, and
centered east to west. In the CS2 and CS4 corn phase samples were taken
between rows. A coring device fitted with a slide hammer and inner sampling
rings of 8.05 cm diameter and 5 cm height was used to collect samples centered
at depths 15 and 45 cm in each location. Samples were carefully trimmed in the
field to match sampling ring height, capped, and stored at 4° C until processing.

The SWCC were generated according to the HYPROP and WP4C
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manufacturer recommended procedures (UMS, 2012; Pertassek et al., 2015;
Decagon Devices, Inc., 2015). Samples were gradually saturated with tap water
from the bottom over 16-20 hours. The height of any soil swelling that occurred
was recorded for calculation of effective sample volume. Holes of a known
volume were augered in the saturated sample to accommodate tensiometers.
HYPROP components were filled with degassed water and the sample (in its
sample ring) was loaded onto the HYPROP apparatus and placed on a scale.
Samples were allowed to air dry with mass and suction measurements
automatically recorded every 10 minutes for the duration of the dry down until
tensiometers cavitated. Sample run times were typically 2-7 days.

After the HYPROP measurement, samples were detached from the
HYPROP apparatus and the sampling ring was removed with care to make sure
all the soil was retained. Samples were dried overnight in an oven at 105° C,
cooled, and weighed. Bulk density was calculated from the oven dry weight and
sample volume. Samples were then ground by hammer mill to pass a 2-mm sieve
and stored at room temperature. Ten subsamples of approximately 4 g were
taken from each sample, weighed in tins, and hydrated by the addition of an
increasing number of droplets of distilled water, in order to reach approximately
2-20% gravimetric water content across the ten subsamples. Hydrated soil was
thoroughly mixed, and tins were capped and sealed and allowed to equilibrate for
16-24 hours. Water potential was then measured on the subsamples using the

WP4C. The weights of the subsamples were recorded following the WP4C
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measurement, dried at 105° C for 16 hours, cooled in a dessicator, and re-
weighed. Gravimetric water content was calculated from the wet and dry
subsample weights and converted to volumetric water content using the entire
sample bulk density. Dr. Sarah Collier (Postdoctoral Fellow at UW-Madison and
DairyCAP Research Associate) and her team processed all samples between

August 2014 and July 2015.

SWCC Model Inputs

Particle Size Distribution and Aggregate Size Distribution

Soil samples for particle size analysis (PSA) and dry-aggregate size
distribution (DASD) were collected October 26-27, 2015, after harvest but before
fall tillage and manure application. A truck mounted probe (Giddings Machine
Company Inc., Windsor, CO) was used to collect three 7.5 cm diameter cores and
three 2.5 cm diameter cores. Soil 5 cm above and below the four depths of
interest (i.e. 5-20 cm for the 15 cm depth) was removed from each of the 2.5 cm
diameter cores and combined in a composite sample for each depth to be used for
PSA.

The PSA was conducted in the laboratory using the hydrometer method
(described in Gee and Or, 2002; method of Day (1965) modified by Gee and
Bauder (1986)). Two 40-50 g subsamples were analyzed for each depth.
Hydrometer readings were taken at 40 seconds (3x) and 3, 10, 30, 60, 90, 120,

412, and 1440 minutes to construct a detailed particle size distribution. After the
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hydrometer readings were taken, each sample was sieved through 1000, 500,
250, 106, and 53 um sieves, dried, and weighed in order to partition the sand
fraction.

No standard method for DASD has been widely adopted; sampling
method, sample preparation, sieve sizes, shaking device, and shaking time can all
vary. After considering dry aggregate analysis method reviews (Diaz-Zorita et al.,
2002; Nimmo and Perkins, 2002; Larney, 2008), what was assumed to be the
most practical and minimal-error-inducing approach was used. The 7.5 cm
diameter cores were transported to the lab in the plastic tubes they were taken
in. The plastic tubes were cut open and the soil 5 cm above and below the four
depths of interest was carefully removed. The core-extracted soil was first
divided along planes of weakness using the drop-shatter technique, and further
broken down using gentle hand manipulation (Di1az-Zorita et al., 2002). Samples
were air dried until the change in weight was less than one percent over six
hours. Two subsamples of approximately 300 g were taken from each sample.
Size fractionation was determined using the Ro-Tap Test Sieve Shaker (W.S.
Tyler, Mentor, OH) for 30 seconds with 8, 4, 2, 1, 0.5, and 0.25 mm sieves. Soil on
each sieve was weighed and the DASD was determined. In some cases the sieves
were loaded with more then 300 g of soil, and these samples were removed from
the final analysis.

Wet aggregate size distribution (WASD) data from 2008 was available at

the 5-20 cm depth (Jokela et al.,, 2011). The authors used the wet-sieving method
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of Cambardella and Elliott (1993) with 4, 2, 1, 0.5, and 0.25 mm sieves, and sieved

samples for ten minutes at 30 strokes/minute with 1-cm amplitude.
Bulk Density

Bulk density from several different sources and time periods is reported
in this research. Due to the long-term nature of the WICST trial, taking multiple
samples that were large enough to capture a representative volume was
discouraged in the interest of minimizing system disturbance. Instead, bulk
density values from previous years were used in combination with more recent
sampling. The samples for HYPROP/WP4C analysis taken in 2014 (described
above) were used for bulk density at 15 and 45 cm. As these samples were only
taken at two depths, bulk density data from Sanford et al. (2012) were used to
estimate 25 cm and 70 cm bulk densities. The authors made bulk density
measurements in 2007 and 2008 using a 3.7 cm hammer core and a 5.4 cm
hydraulic core, respectively, at 0-15, 15-30, 30-60, and 60-90 cm depths. The
2007 and 2008 measurements were very similar despite differing sample
diameters, so the authors reported average values. The 15-30 cm and 60-90 cm
measurements were used in this study to approximate the 25 and 70 cm depths.
Sanford et al. (2012) assumed that no significant change in bulk density below 30
cm was likely to have occurred from the start of the WICST trials in 1989 to 2009
because these are well-structured, grassland soils that have been exposed to
relatively light agricultural equipment. It seems reasonable to extend this

assumption from 2009 to 2015, at least in the case of the 70 cm depth that is
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approximated by this data. The last bulk density measurements used were
collected by Jokela et al. (2011) at the same time samples for wet ASD analysis
were taken. Bulk densities were hand sampled in late October 2008 after harvest
at 5-15 cm depth using a 3.8 cm diameter core, with 16 cores taken per plot in a
zig-zag pattern (Jokela et al., 2011). These bulk density data were used with the

wet ASD data in the wet aggregate Nimmo model.

DayCent Model Simulations

The DayCent model was run for CS2 and CS4 from 1985-2015 under four
field capacity scenarios and three bulk density scenarios for a total of twelve runs
for each cropping system. The CS6 system was not simulated because DayCent
runs for this system are not available (Richard Gaillard, personal
communication). Bulk densities of 1.17, 1.26, 1.36 g cm-3 at 15 cm were tested,
and these values were chosen to capture the range of bulk densities measured in
the CS2 and CS4 systems at this depth. The field capacity values used in the
simulations were estimated from in situ and laboratory water contents at 33 kPa,
the matric suction commonly associated with field capacity in a fine textured soil
(Hillel, 1998). In the in situ data, field capacities at 15 cm ranged from 23-24% 6
across the CS2 and CS4 systems, and in the laboratory data field capacities ranged
from 28-32% 6. Therefore, field capacities of 23, 24, 28, and 32% 6 were input
into the DayCent model for 15 cm. At 45 cm, a similar process was used, and field

capacity inputs to DayCent were 23 and 26% (estimated from in situ data) and 32
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and 34% (estimated from laboratory data). Bulk density was 1.33 g cm™3 at 45 cm.

DayCent simulated 6 in 2015 for each model run was compared to observed 15
cm 6 using linear regression in SAS. Model simulations were evaluated using
RMSE, correlation coefficient, and coefficient of determination.

Other DayCent model inputs included daily minimum and maximum air
temperature and daily precipitation (UW Extension, 2016), vegetation cover
(corn), and soil texture (National Cooperative Soil Survey, 1996). Average
management practices were used in the model from 1985-2009, and precise
management dates and operations (planting, fertilizer application, harvest,
tillage) were input from 2010-2015. The simulated N,0 emissions from April
through November 2015 were summed and cumulative emissions were reported
for each treatment (CS2, CS4) and field capacity and bulk density model run.
Simulated cumulative N2O emissions were used as one way of assessing the
importance of soil hydraulic parameters in model predictions. DayCent
simulations and corresponding statistics were performed courtesy of Richard

Gaillard (Research Assistant, USDA-ARS Dairy Forage Research Center).
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RESULTS

Volumetric Water Content

Soil 8 was similar across treatments at each depth, and the range in VWC
experienced over the season decreased with depth (Figure 4). The 15 cm probes
responded quickly to rainfall events with increases in 6, and the magnitude of 6
response to precipitation decreased with depth. In CS6 the 15 and 25 cm probes
had a lower 6 over the season, and the magnitude of 6 responses to rainfall was
smaller than in the corn rotations. The CS2 45 cm probe measured approximately

4% lower 0 throughout the season then CS4 and CSé.

Measured SWCC

In situ SWCCs

The in situ SWCCs developed from drying episodes showed few
differences among the three treatments (Figures 5-8). Drying episode length
ranged from 3-19 days. The variation in 8 measurements over the tensiometer
suction range was small. The 6 at 15 cm decreased less then 5% from 0-80 kPa,
and this decrease became smaller with depth. The dry-down periods at 15 and 25
cm (Figures 5-6) overlapped among treatments for the most part, although the 25
cm CS6 pasture treatment showed some events with 8 approximately 2% less
then the rest of the measurements. Rotations CS4 and CS6 45 cm depth SWCC

were very similar, however the CS2 45 cm curve was shifted downwards to lower
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0 (Figure 7) because of the lower 8 measured over the season in this treatment at
45 cm. Fewer dry-down periods occurred within the tensiometer measurement
range at the 70 cm depth in CS2 and CS4, and none occurred in CS6 (Figure 8).
The CS2 and CS4 curves that were measured were relatively close to one another
at this depth.

Dry-down periods from the same treatment and depth did not result in
identical SWCCs (Figures 5-8), which could be explained in part by hysteresis

(see discussion; Figure 9).

Comparison of Field and Laboratory SWCC

Two cores were taken at 15 and 45 cm in each treatment for
HYPROP/WP4C analysis. The measurements showed small differences
(maximum 2%) in 6 between the two 15-cm HYPROP cores within treatments for
a given y (Fig 10). At 45 cm, CS2 and CS4 HYPROP cores showed hardly any
difference between cores, however the CS6 45-cm cores exhibited variation
similar to that of the 15-cm cores.

The in situ 6 observations were consistently lower for a given tension
compared to the laboratory measured HYPROP/WP4C data, although the size of
differences differed by depth. At 15 cm for suctions 10-80 kPa, the HYPROP data
reported 6 that were 5-10% greater then the in situ data (Figure 10). Differences
between methods increased as suctions approached 0 kPa, and were as large as

15-20% near 1 kPa. This was also true at 45 cm (Figure 12) with the exception of
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CS2, which had even greater differences in 8 across measurement techniques due

to the lower in situ ® measurements made by the moisture probes in that plot.

CNEAP and Nimmo Model Data Inputs

Particle size distribution

Measured particle size distributions (PSD) were similar across treatments
(Figure 14). The higher clay content at 70 cm in all treatments and CS6 45 cm
compared to other depths (27% vs 20%) was reflected in the separation of these
curves from the others at the smallest particle size range. The measured PSD
were in agreement with previous PSD measurements in the area as part of the
National Cooperative Soil Survey (1996), and with the percent sand silt and clay

measured in the WICST treatments in 2008 (Sanford et al.,, 2012).

Aggregate size distribution: GMR and GSD

The average geometric mean radius (GMR) and average geometric
standard deviation (GSD) were calculated from the measured aggregate size
distribution. With the dry-aggregate method, there appeared to be minimal
differences in GMR among treatments at the same depth (Figures 15), and on
average the dry GMR appeared to increase with depth within a treatment, with
the exception of CS2-15 cm. The dry GSD was relatively similar across
treatments and depths, with the exception of CS6-15cm (Figure 16). Wet

aggregate GMR was smaller then dry aggregate GMR in all treatments at 15 cm,
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and all wet GSD were smaller then dry GSD. The wet-aggregate data had a greater

GMR in CS6 relative to CS2 and CS4, and a smaller GSD in CSé.

Bulk Density

Bulk density at 15 and 45 cm measured in three studies (including this
one) yielded a range of values for CS4 and CS6 (Figure 17). Bulk densities
measured by Sanford et al.,, (2012) were 1.38, 1.35, and 1.33 g cm3 at 15-30 cm
(used here for 25 cm) and 1.42, 1.40, and 1.40 g cm-3 at 60-90 cm (used here for
70 cm), for CS2, CS4, and CS6, respectively. In all cases the samples taken for
subsequent HYPROP analysis (15 and 45 cm) gave the lowest estimates of all the
different measurements across treatments. It is important to note that these
measurements were all taken in the same Block 3 of WICST, but in different
years, so the exact same plot was not necessarily measured at each sampling
time. The HYPROP-related measurements were probably the most carefully

sampled, taken by hand with the new HYPROP sample sleeves.

SWCC Model Predictions

Across all treatments and depths the CNEAP model had the highest 6 for a
given suction (Figures 10-13) compared to measurements and the Nimmo model.
This ranged from 5 m3 m-3 greater 6 compared to the Nimmo model at very dry
suctions, to 20 m3 m-3 greater 6 at 10 kPa. The CNEAP model and dry-aggregate

Nimmo model had the same 0 values at 0 kPa. The wet-aggregate Nimmo model
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at 15 cm had a lower 0 at saturation than the dry-aggregate Nimmo model in the
CS4 and CS6 treatments.

The SWCC models differed from one another in overall shape. The CNEAP
model was a sigmoidal curve. The Nimmo model appeared sigmoidal in shape
from high suctions to 10 kPa when 0 rapidly increased as suctions approached 0,
resulting in an additional inflection point (when suction was graphed on a log
scale). This secondary inflection point between 0-10 kPa in the 15-cm Nimmo
model was more pronounced when the dry-aggregate data was used than when
wet-aggregate data was used. The wet aggregate Nimmo model predicted greater
0 then the dry-aggregate model until 0-1 kPa, when the dry aggregate model
exceeded the wet.

The air entry matric potential, as estimated from the modeled curves,
occured between 10-20 kPa in the CNEAP model and 0-0.1 kPa in the Nimmo

model.

Sensitivity of SWCC Models to Inputs

CNEAP Tortuosity Parameter a

The tortuosity parameter o in the CNEAP model was varied to test model
sensitivity to this empirical parameter (Figure 18). A smaller value of a shifted
the curve laterally and a given 0 corresponds to a lower suction. Large a values

had the opposite effect.
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Nimmo Model Bulk density

The range in bulk densities reported for a rotation plot at different
sampling times and by different coring retrieval methods raised the question of
the sensitivity of the Nimmo model to this parameter. The Nimmo model was
tested using three representative bulk densities: low (1.17), medium (1.32) and
high (1.48). All other model inputs were held constant (Figure 19).

The bulk density used in the Nimmo model had no influence on the
textural component of the model because the porosity was fixed at 0.3. To remain
consistent with this specification, the bulk density used in the textural
component of the model was back-calculated from the porosity assuming a
particle density of 2.65 g-cm3 (BD = (1-®)* 2.65 g-cm3), and was 1.86 g-cm-3.
Therefore the textural component of the Nimmo model was the same across the
bulk density range tested here (Figure 19).

The structural component of the Nimmo model, however, was sensitive to
changes in bulk density when all other model inputs (GMR, GSD) remained
constant. Bulk density was inversely proportional to the structural porosity,
resulting in less structural pore space and a smaller 0 at a given s as bulk density
increased (Figure 19). This sensitivity was limited to the 0-10 kPa range, where
the structural component was most influential, and resulted in 0.04-0.05 m3 m-3
differences in 6 at 0 kPa, with differences increasing towards saturation.

Therefore this sensitivity analysis suggested that bulk density had an effect on
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the SWCC predicted by the Nimmo model, however this effect was likely limited

to predictions in the 0-10 kPa range.

Nimmo Model GMR, GSD, and Sieve sizes
Because measurement of aggregate size distribution is not standardized

(D1az-Zorita et al., 2002), the influence of GMR and GSD on the Nimmo model was
assessed. Three hypothetical aggregate size distributions were used to test
extreme GMR values and varying GSD values and what they mean for the Nimmo
model:

Case 1: ASD was highly skewed towards larger aggregates

Case 2: ASD was equally distributed across all size classes

Case 3: ASD was highly skewed towards smaller aggregates
Case 1 had the largest GMR (10.9 mm), followed by Case 2 (0.7 mm) and Case 3
(0.046 mm), and the GSD was the same in Cases 1 and 3 (0.145) and smaller then
Case 2 GSD (0.187). To compare model sensitivity to GMR size with GSD held
constant, we looked at the differences in the Nimmo model from Case 1 to Case 3
(Figure 20). With a larger GMR, the SWCC was shifted downwards to smaller 6
for a given {5, and the curve increased more rapidly in the very wet end (0-5 kPa).
The model associates larger aggregates with larger interaggragate pores, and in
Case 1 where the average aggregate was very large, most of the structural pore
space was partitioned to the large pores associated with these large aggregates,
while almost none of the pore space was partitioned to the pores between

smaller aggregates.
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The influence of GSD on the model was tested by varying from large GSD

(Case 1: 2.24) to medium (Case 2: 0.187) to small (Case 3:0.009) GSD while GMR
remained constant (0.7 mm) (Figure 21). The Nimmo model uses the GSD as an
index of the tightness of fit of the aggregates to one another, or narrowness of
pores (Nimmo, 1997). When GSD was small (Case 3), aggregates were tightly fit
together, creating small, narrow pores between them that hold on to 6 more
tightly according to capillary theory, leading to larger 6 at greater Y then Cases 1
and 2 (Nimmo, 1997). When GSD was large (Case 1), it implied that the
aggregates fit loosely together, creating larger pores that hold water only at low
suctions, resulting in smaller 6 at a given suction (Figure 21).

The 5-20 cm wet aggregate data (Jokela et al.,, 2011) provided the
opportunity to compare the sensitivity of the Nimmo model to aggregate size
distribution methods and sieve size classes. In addition to different overall
analysis methods (i.e. wet versus dry), the dry aggregate analysis included an
additional 8 mm sieve, while soil was pushed through an 8 mm diameter sieve
mesh in the wet aggregate analysis.

It was difficult to tease apart if the discrepancies in the wet and dry
Nimmo models were due to overall analysis differences, or if the additional sieve
in the dry aggregate analysis played a role. In an attempt to isolate the causes, |
explored the sensitivity of the Nimmo model to sieve sizes. An 8-mm diameter
sieve size class was added to the wet-aggregate data and a negligible amount of

soil (0.0001 g, less then 0.01% of the total sample weight) was attributed to that
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size class, effectively saying the 8 mm sieve existed in the analysis but there were
no aggregates >8 mm in diameter. Adding the 8 mm sieve to the analysis
significantly altered the wet aggregate Nimmo model (Figure 22: referred to as
“adjusted wet aggregate data”) in each treatment, creating a SWCC that was
closer to the dry aggregate Nimmo model. This alteration was likely due to the
adjustments in GMR and GSD by adding an additional sieve size (Figure 23). In
the adjusted data, GMR was lower then the original wet aggregate data GMR, and
GSD was over three times greater. Therefore, the Nimmo model appeared to be
sensitive to the number of sieve size classes through the effects the number of
sieve classes have on GMR and GSD. This did not demonstrate, however, that the

Nimmo model was not sensitive to the type of aggregate analysis that was used.

Comparisons of Measured and Modeled SWCCs

In all cases the CNEAP model predicted the highest water contents across
the entire range of suctions, followed by the Nimmo model and the
HYPROP/WPA4C data (when available), and then the in situ data (Figures 10-13).
Interestingly, at 15 cm the Nimmo model and HYPROP/WP4C data showed good
agreement, particularly when the wet-aggregate Nimmo model was considered.
The rapid increase in 0 from 0-10 kPa in the Nimmo model was mimicked by the
HYPROP/WP4C data. This increase was small in the in situ data, and did not occur

in the CNEAP model.
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In the drier end of the curve (~1500 kPa), the HYPROP/WP4C data and

the Nimmo model corresponded closely with each other, more so then the

HYPROP/WP4C and the CNEAP model did.

DayCent Simulations of 6 and N,0 Emissions

The DayCent model was run with four different field capacities; two
determined from in situ measurements (23 and 24%) and two determined from
laboratory measurements (28 and 32%). Field capacity (FC) was defined as the 6
at 33 kPa matric suction. Simulations with varying bulk density (BD) (1.17, 1.26,
1.36 g cm3), covering the range of field-measured bulk density, were also
conducted for a total of twelve simulations for both CS2 and CS4 treatments
(Table 2).

The DayCent-simulated 15 cm soil moisture consistently underestimated
the observed soil moisture when in situ derived FC parameters (23 and 24%)
were used, with the exception of DOY 260-262 (Figures 24-25 a, b). This was true
across the three BD model runs and for CS2 and CS4. Model runs using the
laboratory derived FC parameters (28 and 32%) showed closer approximations
to observed 6 in general, although from DOY 230 onward, the model run using
FC=32% over predicted the 6 by 3-5% 6 on average (Figure 24-25 c, d).

Different statistics should be used when evaluating model performance
(Del Grosso et al., 2011). Gribb et al., (2009) used RMSE values, calculated based

on predicted vs. measured moisture contents, to evaluate the effect of various soil
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hydraulic property estimates on moisture simulations conducted with the
HYDRUS-1D model. Jarecki et al., (2008) used the correlation coefficient r when
comparing DayCent predicted and observed soil water content, while Parton et
al. (2001; 1998) used the coefficient of determination 2. In this analysis, we
examined these statistics as well as the slope of the observed vs. predicted
regression line. Slope was examined in an attempt to quantify how differences in
observed and predicted water content values vary, i.e. over or under prediction
by DayCent.

The relationship between predicted and observed soil water content
values varied more with FC then with BD (Figures 26-27). The RMSE (Table 3)
was lowest in the most extreme case, FC = 32% and BD = 1.36 g cm?3, for both
treatments, indicating that these parameters resulted in simulations that
minimized the differences in predicted and observed water content. However,
the RMSE did not vary much across the model runs (0.038-0.046, Table 3),
indicating that overall the DayCent simulations minimized differences between
predicted and observed water contents to a similar degree.

The correlation coefficient r was greatest for FC=32% and BD=1.36 g
cm3 in both treatments (0.784 CS2; 0.801 CS4; Table 4), indicating that these
parameters resulted in the best correlation between observed and predicted
values. The remaining r values ranged between 0.582 and 0.780. Overall there
was no overwhelmingly strong correlation between predicted and observed

values. The same basic results from the correlation coefficient r remained true
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when evaluated using the coefficient of determination r? (range of 0.339-0.642),
as r? is the correlation coefficient squared (Table 5).

Previous studies found that the DayCent model predicts water filled pore
space fairly well (e.g. r?=0.64 Parton et al., 2001; r?=0.58-0.86 Parton et al., 1998)
over the growing season for a wide range of soil types. However, in a chisel
plowed corn field on a silt loam soil, Jarecki et al. (2008) found the correlation
between DayCent-simulated and observed soil water content to be weak
(r=0.26). Our results showed correlation coefficients and coefficients of
determination within these ranges found in the literature (Tables 4-5).

The slope of the linear regression of observed vs. simulated soil water
content was significantly different from 1 («=0.05) and the y-intercept was
significantly different from 0 (a=0.05) in all model runs (Tables 6-7). Here, a
slope of 1.0 and an intercept of 0 indicated that predicted and observed values
closely followed one another across their full range on average, but this did not
address scatter about the 1:1 line. A slope=1.0 but with an intercept different
from zero suggested a systematic bias in the simulations. All of the CS2 model
runs had slopes greater than 2.0, while some in the CS4 model runs were closer
to 1.0. In examining the observed vs. simulated scatterplots, it appeared that the
slopes were highly distorted by the few days that DayCent predicts very high soil
water contents (e.g. Figures 26-27 a, b).

Overall, it appears that here DayCent under predicted the soil water

content when FC is derived from in situ methods. Model predictions using FC
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derived from laboratory methods showed slightly better correlations to observed

data, however the comparative statistics (RMSE, r, r?) did strongly favor one
simulation over another.

The DayCent-simulated N20 emissions increased as field capacity and bulk
density increased in both treatments (Figure 28). Emissions were 1.5-2.3x
greater when field capacity was 32% vs 23% (Figure 28). The increase in
emissions with increasing BD was subtle across the lower field capacities and

most pronounced when FC was 32% (Figure 28).



49
DISCUSSION

Measured SWCC

In-situ SWCCs across treatments and depths

Hysteresis explained the differences in SWCC between dry-down periods
for the same treatment and depth (Figures 5-9). The range in 6 for a given suction
across dry-down periods was small (~1-3 m3 m3). Hysteresis arises by multiple
mechanisms: the ink bottle effect created from heterogeneity in the shape and
size of interconnected pores, differences in soil water-soil particle contact angles
depending on if wetting or drying is occurring, entrapped air in the soil, and
swelling and shrinking of the soil that can alter porosity and pore size
distribution (Or and Wraith, 2002). A combination of these mechanisms was
likely occurring in the soil. Figure 9 exhibits the hysteretic behavior seen in the
measurements by including the wetting periods between dry-down periods.
When the curves are followed in chronological order, it appears that 6 for a given

suction depended on the previous moisture state of the soil.

Laboratory Measurements

One possible explanation for the inconsistency between HYPROP samples
within a treatment for Yr<100 kPa is that the HYPROP sample volume may be
smaller then the representative elementary volume (REV; Bear, 1988) so one
core sample did not represent the heterogeneity of soil structure adequately,

leading to discrepancies between samples. It is possible that HYPROP sample
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volume captured more of the structural variations at 45 cm in the cropping
system treatments (CS2 and CS4), as here the development of structure may have
been hampered by 25 years of compaction by machinery. At 45 cm in the pasture
rotation (CS6), the HYPROP measurements were more varied like the 15 cm
measurements. Perhaps this was because the root system in the pasture was
deeper and perennial, aiding in the development of structure, and machinery
traffic was less. It is interesting that the bulk density measurements at 45 cm
were almost identical for the three systems (1.32-1.34 g cm-3), suggesting that
either machinery traffic had little impact on bulk density at this depth, or that the
reduced machinery traffic in CS6 did not led to changes in bulk density.

The inconsistency across treatments and depths of the continuity between
the HYPROP (0-100 kPa) and WP4C (100-10,000 kPa) measurements could
potentially be explained by hysteresis occurring in the WP4C measurements.
Sometimes the transition from HYPROP to WP4C measurement techniques was
smooth, like in CS2 15 cm (Figure 10a). Other times, like in CS4 15 and 45 cm
(Figures 10b and 12b), the jump from HYPROP to WP4C measurements was
abrupt. The WP4C measurements were conducted by drying the soil and adding
water, so the SWCC constructed from these measurements was a wetting curve.
Schelle et al. (2013) observed different curves when WP4C samples were
prepared by wetting or drying and attributed this difference to hysteresis. This
effect was most prominent in finer textured soils. The authors found better

agreement between HYPROP data (which always yields a drying curve) and
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WP4C data when WP4C samples were prepared as part of the drying curve

(Schelle et al., 2013).

The breaks in continuity of the HYPROP data between 0.1-1 kPa was an
indicator of air-entry suction. The HYPROP core was completely saturated, and as
water evaporated from the top of the soil core, air replaced the evaporating water
in small “bursts,” creating bounces in soil suction (Diamantopoulos and Durner,
2012). Schelle et al. (2013) observed this across many soil textures when using

the evaporation method.

Comparison of Field and Laboratory SWCC

The greater 0 reported by laboratory compared to in situ measurements
was consistent with what previous studies have found, although none of the
previous studies used exactly the methods reported here. Pachepsky et al. (2001)
compared laboratory (usually undisturbed pressure plates) and field (neutron
probes and tensiometers) 8- datasets for 135 soils varying in texture and found
that fine-textured soils with sand contents < 50% had substantially lower field 6
than laboratory 6 for a given suction over the 0.45-0.60 m3 m-3 0 range. Basile et
al. (2003) compared SWCC derived using the evaporation method and neutron
probes and tensiometers in the field for multiple horizons at two sites with sandy
loam and loamy sand textures. The authors found that the SWCC from laboratory
data had higher 0 then field data from 0-10 kPa, and the SWCCs progressively

converged at greater suctions (Basile et al., 2003). A similar pattern was seen in
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our results (Figures 10 and 12), however the 0 difference between the laboratory
and field measured data in this study was greater than in the earlier reports.

The ratio of saturated 0 estimated from the field to saturated 6 estimated
from the lab (00!/00'), which has been used in the past to quantify field and lab
SWCC differences, ranged from 53-64%; this was lower than what has been
observed in previous studies, suggesting the difference between field and
laboratory measured saturation was greater in this study then what the literature
typically reports (Basile et al., 2003). In the field, soil was wet-up from the soil
surface during rainfall events, not allowing for all of the air to escape the soil and
leading to air entrapment. In many laboratory methods, soil cores are gradually
saturated from the bottom of the cores, allowing for the escape of air over time
through the top of the sample. Therefore, the laboratory saturated water content
is typically greater then the field saturated water content. Hillel (1980) estimated
the Bo!'/80! ratio to be approximately 90%, and Basile et al. (2003) found similar
values of 78-95%, however these ranges were larger than the 53-64% found in
this research, suggesting a greater difference between laboratory and field
measurements in this work.

Spatial variability, air entrapment, hysteresis, overburden pressure, and
nonequilibrium all help explain why laboratory 0 estimates were larger than field
estimates for a given s, and why this discrepancy was greatest near saturation
(Pachepsky et al., 2001). The spatial variability of soils, particularly well-

aggregated soils with heterogeneous macropores, may not be captured by the
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laboratory samples (Schuh et al., 1988), however when fractal scaling is applied
to bulk density some of the differences between field and laboratory methods can
be explained (Pachepsky et al,, 2001). The question of spatial variability arises in
field measurements as well; the volume of soil measured for suction by the
porous cup of the tensiometer is small (Field et al., 1984). Air entrapment in the
field lowers the available pore space for soil water, lowering 6 estimations, and
the amount of air trapped in the field depends on pore distribution, pore
configuration, the history of wetting and drying, and the water supply rate (Basile
et al.,, 2003). Basile et al. (2003) argued that SWCC derived from field
(instantaneous profile method) and laboratory (evaporation method)
measurements can be explained as two different hysteretic paths that are part of
the same hysteresis loop. Nonequilibrium may occur in laboratory
measurements, particularly if evaporation from the surface of the HYPROP
sample core was too rapid for complete redistribution of water in the sample,
resulting in the tensiometer measurements inside the core to not fully reflect the

total water loss measured.

SWCC Model Predictions

The CNEAP model and dry-aggregate Nimmo model predicted identical 6
values at 0 kPa because the same total porosities (calculated from bulk density)
were used in each model. Although the Nimmo model incorporated soil structure

into SWCC prediction, it did not account for air entrapment, and neither did the
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CNEAP model, resulting in 6 = & at 0 kPa. The wet-aggregate Nimmo model at 15

cm had a lower 0 at saturation in the CS4 and CS6 treatments. This was due to the
smaller bulk density values used in the wet-aggregate Nimmo model than the dry
aggregate model, resulting in a smaller relative @ (e.g., Figure 10b, c).

The CNEAP consistently predicted greater 6 than the Nimmo model for a
given | (Figures 10-13) because of the different ways the models partitioned the
total pore space (see Figure 29 for model partitioning example). The CNEAP
model used the total porosity and distributed it across the range of suctions
associated with different particle sizes. The Nimmo textural component was the
CNEAP model with a cap of 0.3 on the porosity, so it distributed this porosity
across the range of suctions, but since there was less to distribute the resulting 6
values were lower.

The sensitivity of the Arya-Paris model to the tortuosity parameter a
introduced uncertainty that was heightened at the extreme ends of the curve
(Haverkamp et al, 1998 in Haverkamp et al., 2002). While this uncertainty may
have been somewhat reduced with the adoption of the CNEAP model, the value of
a could significantly shift the SWCC curve (Figure 18). Smaller a values suggested
less soil pore tortuosity, reducing the pore length estimated by the model, and
therefore the amount of water held a given matric suction. As « was an
empirically determined parameter, and the original soils used to determine «

were of a coarser texture, it has been suggested that a smaller a value should be
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used for finer textured soils (Arya and Paris, 1981). However, adjusting a in the

CNEAP model was beyond the scope of this analysis.

The sigmoidal shape of the CNEAP model SWCC illustrated the similarity
of shape principle with the cumulative particle size distribution (Nimmo et al.,
2007). The Nimmo model had a similar sigmoidal shape from high suctions to 10
kPa, but also showed a rapid increase in 0 as suctions approached zero, resulting
in a second inflection point in the SWCC. The pore space partitioning in the
Nimmo model was responsible for this; when the textural and structural
components of the Nimmo model were graphed separately, this became clear
(Figure 29). The texture component of the SWCC was calculated using the CNEAP
model with a lower porosity specified, and the result was a scaled down version
of the full CNEAP model because less pore space was available to distribute to the
different suctions and particle sizes. The structural component utilized the
remaining soil porosity, also in a sigmoidal form that resembled the shape of the
cumulative aggregate size distribution.

When the air entry suctions predicted by the CNEAP model (10-20 kPa)
and the Nimmo model (0-0.1 kPa) were compared with the typical range of air
entry of silt loam soil (2.1-5.0 kPa), it appeared that the CNEAP model
overestimates air entry suction, while the Nimmo model underestimated it
(Campbell and Norman, 1998; Radcliffe and Rasmussen, 2002). This spoke to the

importance of incorporating the structural influence of the soil in SWCC, however
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it also illustrated that the Nimmo model may not necessarily capture the
structural component completely.

The 5-20 cm wet aggregate data (Jokela et al.,, 2011) provided the
opportunity to compare the sensitivity of the Nimmo model to aggregate size
distribution methods and sieve size classes. The wet aggregate Nimmo model
predicted higher 0 for most of the structural component of the model, likely
because of the lower GMR than the dry aggregate data, as discussed in the
sensitivity analysis results. The differences in GMR and GSD between wet and dry
aggregate data, leading to differences in the Nimmo model predictions, could be
due to many reasons, and we cannot know which reasons contribute most within
the limits of this study. Different ASD could be determined based on the fact that
dry or wet sieving was used. Further, the samples were taken at different times
(2009 and 2015), and soil aggregate turnover can happen on time steps varying
from 5-27 days, and over years (Six et al., 2004). Hence, although both wet and
dry aggregates were sampled after harvest and before fall tillage, seasonal
weather patterns and the six years between samplings may have changed the
true ASD of the soil. The ASD measurements are sensitive to factors such as
sampling time, sampling technique (for example, the diameter of the sample
probe), sample storage, and the number and size of sieves used (Diaz-Zorita et al.,
2002). All of these factors could lead to incorrect representations of the true ASD
between the wet and dry aggregate measurement techniques. As shown in the

results above, adding an additional sieve size into the wet aggregate data altered
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the wet aggregate Nimmo model to match more closely with the dry aggregate
Nimmo model (Figure 22). While this does not definitively prove that inherent
wet vs. dry analysis differences do not matter to the model, it does illustrate the

Nimmo model’s sensitivity to sieve classes in this instance.

Comparisons of Measured and Modeled SWCCs

The Nimmo model and the HYPROP/WP4(C, when available, visually
showed the best agreement of the modeled-measured SWCC comparisons. That
the Nimmo model provided a closer approximation of the HYPROP/WP4C data
than the CNEAP model suggested the importance of incorporating a structural
component into SWCC models. The Nimmo model captured the rapid decrease in
6 that the HYPROP measured from 0-20 kPa. The Nimmo model did not account
for air-entrapment, and the gradual bottom-up wetting of the HYPROP sample
cores was intended to minimize air trapped in the samples. The minimal amount
of trapped air in the HYPROP samples may therefore explain in part why the
Nimmo model, which doesn’t account for trapped air, captured the rapid
decrease in 0 that the HYPROP measured from 0-20 kPa. The Nimmo model’s
over-prediction of in situ SWCC can also in part be explained by trapped air in the
field soil that was not accounted for in the model.

The HYPROP/WP4C data laid closer to the Nimmo model than the CNEAP
model in the dry end of the SWCC near 1500 kPa (e.g., Figures 10 and 12). This s

corresponded to the textural component of the Nimmo model, confirming that
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the designated textural porosity of 0.3 was appropriate to capture the influences
of texture on the SWCC. The CNEAP model predicted greater 6 at these high
suctions, perhaps suggesting that the CNEAP model assigned too much pore
space to the very fine particle range.

In most cases the HYPROP laid more closely with the wet aggregate
Nimmo model then the dry aggregate Nimmo model (e.g., Figures 10b, c). The
increase in 0 from 5 to 0 kPa in the dry aggregate Nimmo model was much more
rapid than that measured by the HYPROP data. This was likely an effect of the
GMR and GSD. While the wet aggregate Nimmo model resulted in a closer
prediction of the laboratory SWCC then the dry aggregate Nimmo model, it was
not definitive that wet aggregate data is a more appropriate input to the Nimmo
model because, as illustrated above, effects such as the number or size of sieves

used can alter this relationship.

DayCent Simulations of 6 and N,0 Emissions

In general, DayCent simulations of soil water content with in situ derived
FC parameters under-predicted the soil water content. The laboratory derived FC
parameter simulations resulted in slightly better agreement between predicted
and observed soil water contents according to RMSE, r, and r2. The slopes of the
observed vs. predicted soil water content relationship are likely distorted by the
few days with very high predicted water contents (i.e. DOY 261-262, Figures 24-

25). In the in situ derived FC simulations, the relationship between observed and
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predicted water content appeared to be 1:1 (excluding DOY 261-262), but the

relationship is offset to below the 1:1 line (Figures 26-27 a, b). With the
laboratory derived FC simulations, however, this relationship crossed the 1:1
line, under predicting at low water contents and over predicting at higher water
contents (Figures 27-28 c, d).

The in situ and laboratory determined FCs used in this analysis were
determined assuming a traditional definition of field capacity, the soil water
content at 10 kPa in a sandy soil and 33 kPa in loamy or clayey soils. More
recently however, the 10-33 kPa range is being replaced by 5-10 kPa by some soil
physicists according to the National Soil Survey Handbook published by the
Natural Resources Conservation Service (USDA-NRCS, 2016). If this more modern
definition of field capacity is adopted (estimated as the 6 at 10 kPa) here, the
tested in situ FC would be 25 and 27%, and the laboratory FC would be 33 and
35% at 15 cm (Figures 5 and 10a, b). Running this analysis with larger FC values
would likely increase the correlation between observed and simulated soil water
content. However, this also points to the uncertainty surrounding the definition
of FC, and highlights the dependency of simulation models like DayCent on a
parameter that is so vague. For decades the definition of FC has been debated; FC
can be the water content at a certain matric suction (i.e. what is used in this
analysis), after a certain amount of time following saturation, or after a drainage

or hydraulic conductivity flux has significantly declined (Assouline and Or, 2014).
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The substantial DayCent over-predictions of soil water content on DOY
261-262 (i.e. Figures 24-25) gave insight into potential flow process
shortcomings of the DayCent model. These over-predictions corresponded to a
two-day rain event of 80 mm (Figure 4). The measured soil water content
increased at all depths in response to this rain event, even at 70 cm, and the
response was within the same day (Figure 4). This suggested water was flowing
through macropores in the soil because the deeper depths increased in water
content so quickly.

In the DayCent models water movement through the soil was
unidirectional downward, with one soil layer filling to field capacity before water
moves into the next soil layer (Parton et al., 1998). This modeling strategy did not
account for macropore flow. This likely reduced the accuracy of DayCent
predictions of soil water content during large precipitation events, which may
have a compounding effect on predicted vs. observed N20 emissions that depend
on the denitrification process that occurs in high moisture soil conditions.
Therefore, incorporating macropore flow or a soil structure parameter into the
DayCent model may improve its predictions. Recognition of macropore flow in
DayCent might have reduced or eliminated the very high simulated values,
lowering the slopes of the comparisons between simulated and measured (Table
6).

The fine-scale comparisons of simulated and measured water content

made here are also complicated by the details of how the model extracts water
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from each layer. The water potential and root biomass in each layer influence
how much water is extracted from that layer on a day (Parton et al., 1998). Thus
the simulated water content in a layer on a day is a function of previous root
growth in it and every other active layer, and the logic by which actual ET is
determined and partitioned among layers.

Mean N0 emissions measured in WICST in 2010 and 2011 ranged from
2.04-3.71 kg N20-N halin CS2 and 2.20-2.51 kg N20-N ha-1 in CS4 (Osterholz et
al., 2014). In this 2015 analysis, the majority of the emissions predicted with
DayCent simulations for the CS2 treatment were between 2-4.5 kg N2O-N ha-1
(Figure 28), which were within two standard deviations of the largest previously
measured emission (i.e. 3.71 + 0.58*2 kg N20-N ha-1, Osterholz et al., 2014). The
CS2 FC=32% BD=1.36 g cm3 simulation predicted emissions outside of this
range, as did all of the CS4 simulations with FC>23%. Many factors could have
contributed to the differences between the Osterholz et al. (2014) 2010 and 2011
measured cumulative emissions and 2015 simulated emissions, including
weather patterns, seasonal management, timing of measurements, and growing
season length over which emissions were totaled. However it is reassuring that
the predicted emissions by the DayCent model in 2015 were of the same
magnitude as emissions measured in the same system phases previously.
Comparable results were found for DayCent simulated and measured N20
emissions from a chisel plowed corn field on a loam soil in central lowa (Jarecki

et al.,, 2008). There, simulated cumulative emissions were 3.29 kg N20O-N ha‘’l,
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lower then the measured cumulative emissions but not significantly so (Jarecki et
al,, 2008). The authors did not specify how the soil hydraulic parameters (field
capacity, wilting point) used in their DayCent simulations were determined.

While the cumulative emissions simulated by DayCent in this study were
within the expected order of magnitude of cumulative emissions found in other
simulations and field measurements in similar scenarios, it appeared that FC and
BD specifications in the model can significantly alter the emission predictions, to
as much as doubling them. Further, the emissions predicted with the laboratory-
determined FC, which resulted in the best agreement between simulated and
observed soil water content, were the greatest, approaching 5 (CS2) and 9 (CS4)
kg N20-N ha-l (Figures 27-28). While these large emission simulations could be
due to other model inaccuracies, the fact that adjusting the FC parameter by the
variation found in field vs. laboratory measurements can more than double
simulated cumulative N20O emissions is striking.

At a sub continental scale (i.e. the size of the United States), uncertainties
in the DayCent estimates of N2O emissions from agricultural soils range from -35
to 50% of the emission (Del Grosso et al., 2010). This uncertainty increases at
smaller scales, and, at the national scale, uncertainty in model structure (i.e.
model processes) accounted for 83% of the total uncertainty (Del Grosso et al.,
2010). The range in emissions simulated in this study with varying FC parameter
is on par and greater than the uncertainty reported in the literature, suggesting

that FC can have a large effect on model outcomes. Recent work investigating the
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sensitivity of DayCent model parameters identified DayCent output that is
affected by soil water content, but did not test the sensitivity of the hydraulic

parameters such as field capacity and wilting point (Necpalova et al.,, 2015).

CONCLUSION

Few differences were observed among in situ SWCCs across the CS2, CS4,
and CS6 treatments. Differences in dry down period behavior within a treatment
can likely be attributed to hysteresis. Laboratory estimates of the SWCC had
greater 0 at a given suction then in situ estimates at 15 and 45 cm. These
differences increase as suctions approach saturation and are larger then what has
been observed in previous studies, likely because the pore space in the soil field
profile was never fully saturated. This presents an interesting conundrum, as the
lower water contents measured in the field and entrapped air represent true
conditions, yet the fact that some field soils may never reach full saturation under
natural conditions due to air entrapment is not considered in hydraulic property
estimates that are used to in soil water simulations.

The CNEAP model, which does not account for soil structure outside of
bulk density, predicted greater 6 at a given suction then the Nimmo model, which
accounts for soil structure. The closer agreement between the laboratory
measured SWCC and the Nimmo model over the CNEAP model suggest that
incorporating soil structure into SWCC predictions is important. While the
Nimmo model was a closer approximation then CNEAP to laboratory data, the in

situ data was not accurately approximated by either property-transfer model.
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This is likely due to hysteresis and air entrapment, and it again raises the issue
that models and laboratory estimates of the SWCC may not be capturing the true
moisture conditions in the field that affect biological processes.

Using field capacity estimates derived from in situ SWCC led to
underestimations of soil water content by the DayCent model. Laboratory
derived field capacity estimates resulted in slightly better soil water content
predictions by DayCent according to commonly used statistical tools, however
the differences were not striking. The results are further convoluted by the
definition of field capacity, the details of how DayCent extracts water from each
soil layer, and DayCent’s neglect of macropore flow. This highlights the weakness
of using an ill-defined parameter in soil moisture simulations, particularly when
soil water content influences other modeled processes. Setting aside this
definitional argument, differences in laboratory and in situ field capacity
estimates were likely due to entrapped air in the field soil, a phenomenon not
captured by laboratory measurements and DayCent simulations, potentially
contributing to the larger predicted N20 emissions from increases in simulated
denitrification. The range of predicted N20 emissions when field capacity and
bulk density parameters were varied was on par with the uncertainty found in
the DayCent-predicted N20O emissions at larger scales.

Many assumptions are made in systems modeling, and no model can
perfectly simulate environmental processes with 100% accuracy. Compromises

will always need to be made. However, this investigation suggests that there is



more work to be done in representing true, in situ soil water and soil matric
suction relationships, in estimating the hydraulic parameters we glean from
these relationships, and in how we model processes dependent on complex soil

water flow dynamics.
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Table 1: Management details of the treatments examined. CS2, corn/soy; CS4, corn/3
years alfalfa; CS6, rotationally grazed pasture

CS2 Corn 2015

CS4 Corn 2015

CS6 Pasture 2015

Primary tillage

Secondary tillage

Planting date

Variety

Rate

Starter fertilizer

Nitrogen fertilizer

Manure

Pre-emergence
Pesticide/
Herbicide

Post-emergence
Pesticide/
Herbicide

Harvest date

Yield

Strip-tilled
11/12/14

4/30/15

Pioneer PO157 AMX

34,000 seeds/ac

5-14-42 (100 Ibs/ac)
4/30/15

28% UAN sidedress,
(135 Ibs N/ac)
6/16/15,

12,000 GPA liquid manure

(Blaine Dairy)
11/20/2013

RoundUp (44 oz/ac)
Dual Il Magnum (32
oz/ac) 2,4D (16 oz/ac)
4/30/2015

Round Up Power Max
(32 oz/ac)
6/1/2015

10/22/15

215 bu/ac

Disk chisel 8” (Agco 7400)

11/12/14

Field cultivated 6”
(Case IH 200)
4/30/15

4/30/15

Pioneer PO157 AMX

34,000 seeds/ac

5-14-42 (100 Ibs/ac)
4/30/15

12,000 GPA manure
(Blaine Dairy)
11/12/2014

Round Up Power Max
(32 oz/ac)
6/1/2015

10/22/15

249 bu/ac

4/22/13

Freedom Red Clover,
Kopu Il White clover

11 Ibs/ac

50 Ibs N/ac
6/5/15

Whole pasture cut
for dry hay on
6/1/15

Exclosure harvested
7/17, 8/24, 10/1

in T/ac: 1.36, 0.89,
0.56; 2™, 3", 4™
harvests




67

Table 2: Bulk density and field capacity specifications in the DayCent simulations. The
DayCent model was run with each of the field capacity pairs (15 + 45 cm) specified for
each of the bulk densities listed for 15 cm.

Bulk Density . .
Layers (cm) (& om?) Field Capacity
1.17
8: i'ssé;')lo' 10-20, 20-30 1.26 0.23 0.24 0.28 0.32
o 1.36
30-45, 45-60, 60-75, 75-90, 90-105, 105-120, 1.33 0.23 0.26 0.32 0.34

120-150, 150-180, 180-120 (i.e. 45 cm)

Table 3: RMSE of DayCent simulated vs. observed soil water content.

Bulk Density, g cm” 1.17 1.26 1.36
RMSE
System Field Capacity, %6
CS2 23 0.046 0.044 0.041
24 0.045 0.042 0.039
28 0.043 0.042 0.040
32 0.043 0.041 0.039
Cs4 23 0.046 0.043 0.040
24 0.045 0.043 0.041
28 0.042 0.041 0.040
32 0.042 0.040 0.038

Table 4: r of DayCent simulated vs .observed soil water content

Bulk Density, g cm-3 1.17 1.26 1.36
r

System Field Capacity, %
CS2 23 0.695 0.713 0.734
24 0.646 0.667 0.690
28 0.694 0.706 0.725
32 0.745 0.765 0.784
Cs4 23 0.680 0.700 0.721
24 0.582 0.605 0.625
28 0.700 0.713 0.730

32 0.761 0.780 0.801
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Table 5: RZ of DayCent simulated vs. observed soil water content

Bulk Density, g cm-3 1.17 1.26 1.36

System Field Capacity, %

CS2 23 0.483 0.509 0.538
24 0.417 0.444 0.476
28 0.482 0.499 0.526
32 0.556 0.585 0.614
Cs4 23 0.463 0.490 0.520
24 0.339 0.367 0.390
28 0.490 0.508 0.533
32 0.578 0.608 0.642

Table 6: Slope of DayCent simulated vs. observed soil water content.

Bulk Density, g cm™ 1.17 1.26 1.36
Slope
System Field Capacity, %
CS2 23 2.48 2.45 2.43
24 2.10 2.08 2.08
28 2.29 2.30 2.32
32 2.68 2.70 2.70
Ccs4 23 1.96 1.94 1.93
24 1.50 1.50 1.51
28 1.92 1.94 1.96
32 2.29 2.30 2.32

Table 7: Y-Intercept of DayCent simulated vs. observed soil water content.

Bulk Density, g cm-3 1.17 1.26 1.36
Y-Intercept

System Field Capacity, %

CS2 23 -0.430 -0.424 -0.418
24 -0.316 -0.311 -0.310
28 -0.321 -0.322 -0.327
32 -0.383 -0.387 -0.388

Ccs4 23 -0.294 -0.290 -0.286
24 -0.160 -0.160 -0.161
28 -0.225 -0.227 -0.231

32 -0.279 -0.282 -0.286
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Figure 1: Field-collected 8 measurements at each depth and the factory-supplied default
calibration from Campbell Scientific.
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Figure 2: Field-collected 8 measurements and the Vaz et al. (2013) calibration. This is the
calibration applied to the 15 and 25 cm probes in this experiment.
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Figure 3: Field-collected 8 measurements, the Vaz et al. (2013) calibration, and the
adapted Vaz et al. (2013) calibration. The adapted calibration is applied to the 45 and 70
cm probes in this experiment.
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Figure 5: Soil water characteristic curves derived from in situ data at 15 cm in the three
treatments.
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Figure 6: Soil water characteristic curves derived from in situ data at 25 cm in the three
treatments.
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Figure 7: Soil water characteristic curves derived from in situ data at 45 cm in the three
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Figure 8: Soil water characteristic curves derived from in situ data at 70 cm in the three
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Figure 9: Example of the hysteretic behavior seen in the measurements, taken from CS2-
15 cm Sept. 7-10. Drying and wetting events are numbered in the sequential order they
occurred. Hourly averages are used for drying periods, 20-minute averages for wetting
periods. Top graph includes the first wetting event; bottom graph zooms in on the
remaining events. Triangles and solid lines indicate drying, circles and dashed lines
indicate wetting. Events are shaded in the order they occurred- dark (first) to light (last).
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Figure 10a: Measured and modeled SWCC for the CS2 treatment at 15 cm depth. The top
panel covers a smaller range of matric suctions, and the bottom panel is the entire
suction range (log scale). Measured data is shown as points and property-transfer
models are shown as lines.
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Figure 10b: Measured and modeled SWCC for the CS4 treatment at 15 cm depth. The top
panel covers a smaller range of matric suctions, and the bottom panel is the entire
suction range (log scale). Measured data is shown as points and property-transfer
models are shown as lines.
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Figure 10c: Measured and modeled SWCC for the CS6 treatment at 15 cm depth. The top
panel covers a smaller range of matric suctions, and the bottom panel is the entire
suction range (log scale). Measured data is shown as points and property-transfer
models are shown as lines.
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panel covers a smaller range of matric suctions, and the bottom panel is the entire
suction range (log scale). Measured data is shown as points and property-transfer
models are shown as lines.



0.60
0.55
0.50
0.45
"5 0.40
E 035
0.30
0.25
0.20

0.15

0.60
0.50

0.40

0 (m3m3)

0.20

0.10

0.00

¢ Field

CS4 25cm SWCC CNEAP
i === Nimmo- Dry Agg

79

0 20 40 60 80 100
Y (kPa)
\\
4 \\\
\
\\
\\~~~
X’ « \,"‘V-m&‘ - \\
K N\,
b SRS
4 ) \
N
\
\\\
4 S
\\‘§
0 1 10 100 1000 10000 100000
Y (kPa)

Figure 11b: Measured and modeled SWCC for the CS4 treatment at 25 cm depth. The top
panel covers a smaller range of matric suctions, and the bottom panel is the entire
suction range (log scale). Measured data is shown as points and property-transfer
models are shown as lines.
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Figure 11c: Measured and modeled SWCC for the CS6 treatment at 25 cm depth. The top
panel covers a smaller range of matric suctions, and the bottom panel is the entire
suction range (log scale). Measured data is shown as points and property-transfer
models are shown as lines.
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Figure 12a: Measured and modeled SWCC for the CS2 treatment at 45 cm depth. The top
panel covers a smaller range of matric suctions, and the bottom panel is the entire
suction range (log scale). Measured data is shown as points and property-transfer
models are shown as lines



82

055 . CS4 45 cm SWCC Elel}dl
- a
+ Lab2
0.50 === Nimmo- Dry Agg
CNEAP
0.45
— 0.40
o \
g \
mE 0.35 - \‘ et
= =l
@ \\- i_#_;}_-+-+-+-+ +
0.25 - x X XX XK
0.20 -
015 T T T T 1
0 20 40 60 80 100
Y (kPa)
0.60
Y
S -
0.10 - + ‘:}"
0.00 T T T T )
0 1 10 100 1000 10000
¥ (kPa)

Figure 12b: Measured and modeled SWCC for the CS4 treatment at 45 cm depth. The top
panel covers a smaller range of matric suctions, and the bottom panel is the entire
suction range (log scale). Measured data is shown as points and property-transfer

models are shown as lines.
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Figure 12c: Measured and modeled SWCC for the CS6 treatment at 45 cm depth. The top
panel covers a smaller range of matric suctions, and the bottom panel is the entire
suction range (log scale). Measured data is shown as points and property-transfer
models are shown as lines.
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Figure 13a: Measured and modeled SWCC for the CS2 treatment at 70 cm depth. The top
panel covers a smaller range of matric suctions, and the bottom panel is the entire
suction range (log scale). Measured data is shown as points and property-transfer
models are shown as lines.
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Figure 13b: Measured and modeled SWCC for the CS4 treatment at 70 cm depth. The top
panel covers a smaller range of matric suctions, and the bottom panel is the entire
suction range (log scale). Measured data is shown as points and property-transfer
models are shown as lines.
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Figure 13c: Measured and modeled SWCC for the CS6 treatment at 70 cm depth. The top
panel covers a smaller range of matric suctions, and the bottom panel is the entire
suction range (log scale). Property-transfer models are shown as lines. No SWCC could
be constructed from measured data at this depth in CS6.
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Figure 17: The various bulk density measurements made at WICST used in this study to
approximate bulk density at 15 (top) and 45 cm (bottom) depths.
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Figure 18: The sensitivity of the CNEAP model to changes the empirical a parameter.
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Figure 19: The sensitivity of the Nimmo model to changes in bulk density (BD). Only the
structural component of the model changes, and differences are limited to 0-10 kPa.
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Figure 21: Nimmo model sensitivity to variations in GSD. GMR and bulk density are held
constant.
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Figure 22: Nimmo model sensitivity to sieve sizes. Adjusted wet aggregate data is the wet
aggregate data with an additional sieve included in the analysis to match the dry
aggregate sieve sizes.
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Figure 24: CS2 DayCent simulated soil water content at 15 cm depth using in situ (a, b)
derived field capacity (FC) parameters and laboratory (c, d) derived FC parameters. Bulk
density (BD) was also varied in the simulations.
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Figure 25: CS4 DayCent simulated soil water content at 15 cm depth using in situ (a, b)
derived field capacity (FC) parameters and laboratory (c, d) derived FC parameters. Bulk
density (BD) was also varied in the simulations.
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Figure 26: CS2 DayCent simulated vs. observed soil water contents at 15 cm depth using
in situ (a, b) derived field capacity (FC) parameters and laboratory (c, d) derived FC
parameters. Bulk density (BD) was also varied in the simulations.
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Figure 27: CS4 DayCent simulated vs. observed soil water contents at 15 cm depth using
in situ (a, b) derived field capacity (FC) parameters and laboratory (c, d) derived FC
parameters. Bulk density (BD) was also varied in the simulations.
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