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Abstract 

 

 Soil aggregation, a process mediated by the soil microbial community, is a 

primary mechanism by which soil organic carbon (SOC) is stabilized and potentially 

sequestered.  SOC benefits many aspects of overall soil quality, including soil nutrient 

availability, water holding capacity, structural stability, and crop productivity.  Intensive 

agricultural management practices, including tillage, are known to decrease SOC content 

which reduces soil quality over time.  Organic agriculture remains largely dependent on 

tillage to control weeds and optimize yields.  With increasing organic acreage on the 

landscape in recent years, ensuring that these production methods maintain or improve 

SOC content, and therefore soil quality, is crucial to agricultural sustainability.  As such, 

understanding the means by which SOC is stored and stabilized in the long-term, and 

how these processes respond to various agricultural management, is important.  This 

study investigates how factors involved in SOC storage, including soil aggregation, 

aggregate C content, and microbial community composition, are affected by management 

practices specific to individual crop phases in an organic cash grain system.  The 

cropping system we studied is a three-year organically managed rotation of corn (Zea 

mays L.), soybeans [Glycine max (L.) Merr.], and winter wheat (Triticum aestivum L.). 

The winter wheat phase of the rotation is followed by a mixed oat (Avena sativa 
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L.)/berseem clover (Trifolium alexandrium L.) cover crop.  This work was performed at 

the Wisconsin Integrated Cropping Systems Trial (WICST) in Arlington, Wisconsin, U.S. 

Soil aggregate distribution was determined by calculating proportions of six aggregate 

fractions within the whole soil that differed by size and physical location.  Aggregate 

fractions included macroaggregates (M; >250µm), free microaggregates (m; 53-250µm), 

free silt and clay (s+c; <53µm), and three fractions occluded within the M fraction:  

coarse particulate organic matter (cPOM; >250µm), occluded microaggregates (Mm; 53-

250µm), and occluded silt and clay (Ms+c; <53µm).  Of the three crop phases studied, 

the soil in the corn phase in one year sampled and both the corn and soybean phases in 

the following year was the most aggregated, as indicated by a higher proportion of the M 

fraction than the wheat phase in both years.  This high level of aggregation was observed 

despite intensive tillage and cultivation practices for weed management in the corn and 

soybean phases, which is known to decrease soil aggregation.  Aggregation in the corn 

phase may have benefitted from high carbon (C) inputs in the form of crop residues and 

animal manure relative to other crop phases, providing evidence that sufficient C input 

may counteract the negative impacts of tillage on the process of aggregate formation.  As 

an additional driving factor behind the soil aggregation process, microbial community 

abundance and structure was also investigated.  Total biomass and fungal to bacterial 

ratio (F:B) were both greater in the wheat phase compared with the corn and soybean 

phases in 2015 when sampling time across crop phases was the same.  Abundance of 

gram-positive bacteria (Gm+), gram-negative bacteria (Gm-), and actinomycetes, 

however, were lower in wheat versus corn and/or soybean phases in 2015.  Higher fungal 

abundance in the wheat phase of 2015 was mainly driven by a larger abundance of 
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arbuscular mycorrhizal fungi (AMF).  Saprotrophic fungi (SF) were more abundant in 

soybean and corn versus wheat in both years.  While higher F:B, AMF abundance, and 

total biomass in the wheat phase in 2015 may have been due to the presence of a standing 

cover crop at time of sampling, the larger abundance of AMF did not result in higher 

aggregation in this crop phase.  Although fungi are known to positively impact aggregate 

formation, greater fungal abundance was not observed in the corn phase in 2014 where 

the highest level of aggregation was found that year.  SF abundance was greater in corn 

and soybean phases in 2015 when high aggregation was observed in these phases.  

However, these results were not consistent with 2014 when high SF abundance in 

soybean did not result in increased aggregation.  Thus, we concluded that microbial 

community composition and abundance of specific microbial ecological groups was not 

predictive of soil aggregation within a given year.  It is possible that a residual effect of 

cover crops on the composition of the microbial community exists in this system, as the 

wheat phase transitions to corn the following season and cover crops are incorporated.  

However, additional sampling events throughout the early growing season are needed to 

assess in-season shifts in microbial community abundance and associated relationships 

with soil aggregation.  In summary, this work demonstrates that soil aggregation and 

abundance of specific microbial ecological groups are dynamic with respect to crop phase 

within a crop rotation.  While the convention in many scientific studies is to focus on a 

single sampling event or crop phase for the comparison of soil characteristics related to 

cropping systems, this approach may neglect potential variability that exists throughout a 

rotation, as it assumes soil properties remain constant throughout crop rotations.  In order 

to provide management recommendations that result from accurately describing within-
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rotation aggregation and potential SOC capture, more frequent sampling is recommended 

to provide improved characterization of complex cropping systems.  Such analysis will 

allow targeting of specific vulnerabilities within crop rotations and improve the ability to 

manage SOC. 
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Introduction 

 

This work assesses several measures of soil quality as they are affected by 

agricultural management in specific crop phases of a long-term rotation.  Broadly, soil 

quality is defined as “the ability of soil to function” with regards to agricultural 

productivity (crops and livestock), maintenance or improvement of air and water 

resources, and support of human population health (Karlen et al., 1997).  Ensuring that 

soil quality is maintained or enhanced will be vital if agricultural production is to meet 

the needs of a growing human population in the years to come, though this task is not 

easily undertaken.  Accurate measurement of soil quality depends on a combined 

assessment of soil physical (e.g. structure, bulk density, water conductivity), chemical 

(e.g. available nutrients, pH, organic matter), and biological (e.g. microbial biomass, 

microbial community composition) properties that can be influenced by agricultural 

management (Askari and Holden, 2015; Jokela et al., 2011; Karlen et al., 1997).   

A major impact of agricultural activity on soil quality is the addition (or 

depletion) of soil organic matter (SOM) and associated soil organic carbon (SOC).  SOC 

positively affects soil quality by increasing or improving nutrient availability, water 

holding capacity, soil structure, and crop productivity while reducing negative 

agricultural externalities such as erosion (Rasmussen et al., 1998; Blanco-Canqui and Lal, 

2004; Lal, 2004b).  However, intensive agricultural management including land use 

change and tillage practices have resulted in a net loss of SOC, enhancing erosive 

processes and increasing the release of CO2 through oxidation of SOC (Lal, 2004b; 

Montgomery, 2007; Reicosky et al., 1997).  DeLuca and Zabinski (2011) estimated that 

nearly 50% of SOC has been lost as a result of cultivation from surface soil horizons in 
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the Midwestern United States when compared with the native prairie soils that once 

dominated the landscape.  Conservation tillage (CT) has been suggested as a means to 

enhance the soil’s ability to sequester SOC, potentially serving as partial mitigation for 

climate-changing effects of greenhouse gases (GHGs) including CO2 (Lal, 2004b). 

Several studies have shown, however, that soils under CT or no-tillage (NT) do not 

sequester SOC throughout the entire soil profile (Baker et al., 2007; Blanco-Canqui and 

Lal, 2008; Novak et al., 2009), casting doubts as to whether SOC sequestration may be an 

effective climate change mitigation tool (VandenBygaart, 2016). 

 Irrespective of SOC retention to effectively mitigate climate change, it must be 

preserved if agricultural productivity is to be maintained (Lal, 2004a).  One mechanism 

by which SOC is protected and sequestered over time within the soil structure is through 

aggregation.  The aggregation process begins when primary soil particles (i.e. silt and 

clay) are pressed together through physical forces imposed by fine plant roots and fungal 

hyphae.  The resulting soil aggregates, termed “macroaggregates”, are stabilized by both 

the root and hyphal physical structure as well as microbe-produced compounds that act as 

glues, including bacterial polysaccharides and fungal proteins (Bossuyt et al., 2001; Rillig 

and Mummey, 2006). Within macroaggregates, decomposing particulate organic matter 

(POM) serves as nucleation sites for the formation of smaller microaggregates (Angers et 

al., 1997; Chung et al., 2008; Kong et al., 2005).  These microaggregates are also 

stabilized by microbial byproducts in addition to the physical protection afforded by the 

macroaggregate structure surrounding them (Golchin et al., 1994; Rillig and Mummey, 

2006).  Aggregate hierarchy theory introduced by Tisdall and Oades (1982) suggests that 

as soil aggregates become smaller, the binding agents contributing to their stability 
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become increasingly persistent.  As such, microaggregates are far more stable and 

resistant to turnover than macroaggregates.  Thus, long-term SOC storage is thought to 

take place within microaggregates (Jastrow 1996; Six et al. 2004), though this would not 

be possible without macroaggregates, which provide the formation site for stable 

microaggregates (Angers et al., 1997; Oades, 1984).  Macroaggregates are much more 

vulnerable to turnover due to the transient nature of their binding agents (Tisdall and 

Oades, 1980, 1982), and are particularly disrupted when exposed to tillage (Grandy and 

Robertson, 2006). 

 As the main drivers of soil aggregation, and with related impacts on SOC 

sequestration, the soil microbial community is an important factor in soil quality.  In 

general, increased microbial biomass and fungal abundance increases aggregate 

formation (Bossuyt et al., 2001; Lucas et al., 2014).  While a reduction in fungal 

abundance produces the opposite effect, reducing bacterial abundance has not been 

shown to reduce aggregation (Bossuyt et al., 2001).  This suggests microbial community 

composition is an important determinant in the formation of soil aggregates and SOC 

sequestration.  Both agricultural management and inherent edaphic properties are known 

to influence abundance and composition of the soil microbial community.  Soil bacterial 

community composition tends to be most heavily affected by soil type, while fungal 

community composition is often driven by nutrient availability/fertilization (Girvan et al., 

2003; Lauber et al., 2008; Suzuki et al., 2009).  Disturbance can also affect community 

abundance and composition; conventional tillage practices are known to reduce total 

microbial biomass as well as fungal abundance, while shifting dominance in the 

community to bacteria compared with CT or NT (Ghimire et al., 2014; Wang et al., 2010; 
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Wortman et al. 2013).  While altering the microbial community can indirectly affect SOC 

sequestration through reduced aggregate formation, microbes may also affect SOC stocks 

more directly.  Microbially-derived compounds likely comprise a significant portion of 

stable SOM (Kallenbach et al., 2015, 2016; Liang and Balser, 2008; Simpson et al., 

2007), potentially reducing SOC content in agricultural soils exposed to tillage practices 

known to disrupt and reduce abundance of certain microbial groups. 

 With all of the evidence related to the negative effects of conventional tillage 

practices on SOC content and storage, it may seem that a switch to CT or NT practices 

would provide a simple solution to the SOC sequestration challenge.  However, such a 

paradigm shift is not possible with all facets of agricultural production.  For example, 

organic agriculture largely depends on tillage practices for weed control, with yield 

competitiveness strongly related to successful weed management (Cavigelli et al., 2008, 

2013; Posner et al., 2008).  As a growing market, organic production in the U.S. has 

increased dramatically since the establishment of the USDA’s National Organic Program 

(NOP) standards in 2002.  Cropland acreage under organic production in the United 

States grew from under 1 million acres in 1997 to over 3.5 million acres in 2013 (Greene, 

2013; USDA NASS).  Rising consumer demand and higher price premiums for 

organically-produced food have contributed to this increase.  Growth in organic food 

sales has risen consistently as well, from around $10 billion in 2004 to over $35 billion in 

2013 (Greene, 2013). As organic acreage in the U.S. continues to increase, ensuring that 

agricultural management in these systems maintains or improves soil quality is crucial in 

order for these systems to contribute to long-term SOC storage. 



5 

 

 In organic agriculture, soil-building and SOC gains are accomplished primarily 

through the addition of organic materials.  Organic farmers commonly incorporate 

organic inputs or mitigate SOC losses through use of cover-cropping, animal manures, 

diverse crop rotations, and judicious use of tillage (Cavigelli et al., 2013; Diacono and 

Montemurro, 2010; Silva, 2014).  Cover crops promote SOC accrual through both above 

and belowground biomass inputs (Rasse et al., 2005).  Animal manure additions can also 

increase soil SOC content (Foereid and Høgh-Jensen, 2004; Williams and Petticrew, 

2009).  Increasing cropping system diversity through rotation enhances soil fertility and 

crop yields by reducing pest and weed pressure, promoting nutrient cycling, and 

increasing microbial biomass and activity (Watson et al., 2002).   

Despite the fact that many soil-building practices are associated with organic 

production, insufficient use of these practices in organic systems can lead to a decline in 

SOC content, and therefore, soil quality.  A study by Sanford et al. (2012) at the 

Wisconsin Integrated Cropping Systems Trial (WICST) showed that all cropping systems 

involving an annual crop phase, including a long-term organic grain rotation had lost 

significant amounts of SOC to a depth of 90 cm over 20 years.  Though this organic 

system includes use of cover crops, manure application, and crop rotation, it shared the 

largest loss of SOC observed in the study with a conventional, continuous corn system.  

Intensive use of tillage and insufficient belowground biomass inputs were cited as the 

driving factors for SOC loss in the organic grain system.  Significant losses of SOC, 

despite the use of beneficial management practices, highlights a need for a deeper 

understanding of SOC cycling and storage processes in this organic system.  The work 
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presented here attempts to contribute to that understanding by investigating the SOC 

storage mechanism (soil aggregation) and its driving factor (the microbial community) on 

a crop phase by crop phase basis in the organic grain rotation at WICST.  By better 

understanding the nuances of SOC storage and the factors driving this process within a 

specific cropping system, we hope to identify management practices that will aid in the 

preservation of this resource in the future. 
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CHAPTER I 

 

Characterization of Soil Aggregate Distribution and Aggregate Carbon Content in an 

Organic Cash Grain Rotation in Wisconsin, USA 

 

Abstract 

 

 Soil organic carbon (SOC) and soil aggregate stabilization are important 

contributors to soil health and the maintenance of soil carbon (C) stocks.  However, the 

impacts of specific crop management practices on these factors within a defined crop 

rotation remain unclear.   To better understand the impact of agricultural management on 

these dynamic soil processes, we assessed two soil parameters: 1) soil aggregate 

distribution, and 2) soil aggregate C content, to determine if differences could be 

determined between crop phases in a three-year organic grain rotation.  The study was 

conducted within the organic cash grain rotation at the Wisconsin Integrated Cropping 

Systems Trial (WICST), a 25-year trial in Arlington, WI, USA. Baseline soils were 

sampled after harvest of organically managed wheat, soybean and corn in 2014 and 2015. 

Soil aggregate proportions were characterized with wet sieving techniques, while 

aggregate C content was measured through flash combustion. We found that while crop 

phase did not affect overall the aggregate C content within the time frame of our study 

which we did not expect, crop phase did affect aggregate distribution as determined by 

the relative proportion of different size classes.  Soil from the corn phase in 2014 and 

both corn and soybean in 2015 showed significantly greater aggregation than soil from 

the wheat phase of the rotation in either year, despite the intensive use of tillage in both 

the corn and soybean phases. Soil aggregation was positively correlated with total C 

inputs in the combined forms of plant biomass and manure which were highest during the 
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corn phase.  This provides evidence that input of C may counteract some negative 

impacts of tillage on soil aggregation.  The impact of sampling time across crop phases 

on aggregate distribution highlights the dynamic relationship between SOC and aggregate 

distribution across cropping system phases.  A single sampling event may not be 

adequate to characterize and compare systems under diverse crop rotations, suggesting 

soil samples collected during each crop phase would more accurately characterize 

aggregate distribution dynamics.  Accurate characterization of sensitive soil properties 

including aggregate distribution is vital to the development of management 

recommendations for SOC management. 

 

Introduction 

 

 Soil organic matter (SOM) is an extremely valuable constituent of agricultural 

soils, with benefits for plant nutrient availability, water holding capacity, soil structure, 

and crop productivity while reducing erosion (Rasmussen et al., 1998; Blanco-Canqui 

and Lal, 2004; Lal, 2004b).  Soil organic carbon (SOC), a component of SOM, is not 

only vital to agricultural productivity and sustainability (Lal, 2004a), but also in 

determining the soil’s potential to serve as a carbon reservoir. SOC is preserved in the 

soil through chemical stabilization, biochemical recalcitrance, and, most critically, 

physical protection within soil aggregates, which differ in their level of persistence over 

time dependent on their size and nature of associated SOM binding agents (Six et al., 

2000a; Tisdall and Oades, 1982).   

The aggregate hierarchy theory, introduced in 1982 by Tisdall and Oades, 

suggests that soil structure is a result of aggregation occurring on a range of spatial 
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scales. The smallest soil particles, the silt and clay fraction (< 53 µm), contains the most 

stable SOC. The next most-stable is SOC that is bound to and physically protected as 

partially degraded organic matter within microaggregates (53-250 µm), held together 

with persistent microbial products including glomalin (Oades, 1993; Oades and Waters, 

1991; Rasmussen et al., 2005). Larger macroaggregates (> 250 µm), which are bound 

together with more temporary binding agents such as fine roots and fungal hyphae, 

contain SOC that is more vulnerable to microbial decomposition, as these less persistent 

binding agents can more readily be degraded or disturbed (Jastrow, 1996; Oades and 

Waters, 1991; Tisdall and Oades, 1982).  

Macroaggregates play a critical role in SOC sequestration, contributing to 

physical protection of soil carbon, providing a site for formation of stable, occluded 

microaggregates (Angers et al., 1997; Jastrow, 1996; Oades, 1984). As new C inputs 

enter the soil in the form of plant residues or microbial byproducts, they are stored 

preferentially within large soil macroaggregates, and eventually serve as nuclei for 

microaggregate formation (Chung et al., 2008; Kong et al., 2005). These microaggregates 

are less susceptible to carbon turnover induced by agricultural management and have 

more persistent binding agents than macroaggregates (Blanco-Canqui and Lal, 2004; Lal, 

2004b; Rasmussen et al., 2005). Both occluded and freely existing microaggregates are 

the means by which SOC is sequestered long-term in soils.   

 As macroaggregation is a major influence on SOC sequestration, it follows that 

disturbance of these sensitive particles is a significant source of SOC losses from soil.  

Indeed, macroaggregates experience a rate of turnover that is greater than any other soil 

fraction due to the impermanent nature of their binding agents (Tisdall and Oades, 1980, 
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1982). As these binding agents are decomposed by soil biological activity, 

macroaggregates are made more vulnerable to breakdown, exposing the microaggregates 

contained within (Oades, 1993; Six et al., 2000a).  As aggregates are disrupted, the SOM 

contained within is made available as a source of energy for soil microbes, and converted 

through respiration to CO2 and released to the atmosphere (Rovira and Greacen, 1957; 

Six et al., 1998). 

Agricultural management of soils, particularly disturbance with tillage, is a major 

contributor to macroaggregate turnover, and therefore SOC losses. Many studies have 

demonstrated the impacts of tillage on soil aggregation. No-till (NT) agricultural 

practices have been shown to preserve or enhance soil aggregation and SOC content at 

depths of up to 30cm, compared with conventionally-tilled (CT) soils (Baker et al., 2007; 

Sheehy et al., 2015; Six et al., 1998, 2000a). In addition, studies comparing previously 

undisturbed soils with soils under long-term agricultural use found that a single tillage 

event reduced the level of soil aggregation (amount of macroaggregates) to that of long-

term agricultural soils, emphasizing the speed at which soils under agricultural use may 

become degraded (Grandy and Robertson, 2006; Tisdall and Oades, 1980).  While SOC 

losses from land managed with reduced-till practices may be slowed through increased 

soil aggregation, whether a reduction in tillage can significantly increase amounts of SOC 

over time in the entire soil profile versus surface layers alone still remains unclear 

(Blanco-Canqui and Lal, 2008; Lal, 2004b; Novak et al., 2009).  

While certain cropping systems practices, such as tillage, can negatively impact 

soil aggregation and SOC content, other practices can provide positive contributions to 

the increase in SOC and C sequestration.  Systems with high organic matter additions 
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have been shown to increase structural stability (enhanced aggregation), SOC content, 

and improve productivity over those with lower additions (Blankinship et al., 2016; 

Jokela et al., 2011; Kong et al., 2005).  Belowground organic matter inputs, such as plant 

roots and their exudates, can also contribute to the overall organic matter of a system, and 

are especially beneficial for enhancing SOC (Campbell et al., 1991; Rasse et al., 2005; 

Sanford et al., 2012).  Changes in SOC content can be detected following a change in 

SOM inputs, as C content of the various soil aggregate fractions is sensitive to 

management changes (Crittenden et al., 2015; Doane et al., 2003; Whitbread et al., 2000).  

This sensitivity makes soil aggregates strong indicators of SOC dynamics (Denef et al., 

2007). 

The organic industry in the United States (U.S.), included a total of 14,093 farms 

in 2014 (USDA NASS; USDA ERS). The 2014 national agricultural survey of organic 

production conducted by the United States Department of Agriculture (USDA) reported 

203,438 acres of organic corn and 98,832 acres of organic soybean among over 3.5 

million organic cropland and vegetable acres in the U.S. (USDA NASS).  Organic 

management also requires farmers to specifically incorporate soil building practices such 

as cover cropping and diverse crop rotations, as set forth in 7 CFR § 205.203 and 205.205 

of the National Organic Program (NOP) (USDA-AMS NOP), making the use of organic 

inputs in these farming systems commonplace. 

As organic management practices routinely incorporate organic inputs through 

cover cropping and animal manures, organic systems could serve as a means to achieve 

gains in SOC (Cavigelli et al., 2013; Diacono and Montemurro, 2010). Several studies 

comparing organic and conventional production methods have demonstrated the benefits 
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of organic systems for increasing SOC content and maintaining or improving soil 

structure (Foereid and Høgh-Jensen, 2004; Gerhardt, 1997; Williams and Petticrew, 

2009). However, studies conducted at the Wisconsin Integrated Cropping Systems Trial 

(WICST) in Arlington, WI do not support these findings. Sanford et al. (2012), for 

example, found that an organic grain rotation at WICST lost 5 Mg SOC ha-1 to a depth of 

91 cm over a 20-year period, comparable to the losses observed in the conventionally 

tilled and managed continuous corn system.  In a related study, Cates et al. (2016) found 

that this same organic grain rotation had lower levels of aggregation when compared with 

other cropping systems in the trial, despite the integration of beneficial soil management 

practices over 20 years, which included diverse crop rotation, cover crops, and more 

recently, additions of a pelletized composted poultry manure for nearly a decade.  

Though it has been previously indicated that soils with high background levels of SOC, 

such as the prairie-derived soils at WICST, may not sequester C as easily as those with 

lower background SOC (Peichl et al., 2010), the results of these studies emphasize that 

SOC dynamics and soil aggregate stability as impacted by integrated cropping strategies 

are still poorly understood, particularly in organic cropping systems.  As such, further 

investigation of the interactions between crop management practices, including crop 

rotation, fertility inputs, and intensified cover crop use, on SOC dynamics and soil 

aggregate stability is greatly needed, providing a better understanding of the impacts of 

organic agricultural management on these soil quality indicators (Lichtfouse et al., 2010; 

Morgan et al., 2010). 
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To address the need to understand the impacts of organic management on soil 

organic carbon and aggregation, and to develop practices and rotation strategies to 

enhance these factors, a multi-year experiment was begun at WICST to evaluate the 

impact of increased carbon inputs on SOC dynamics in the organic grain rotation.  

Treatments include combinations of cover crop and tillage/cultivation strategies designed 

to increase organic matter additions and retention across each crop phase.  Ongoing work 

will more specifically address the impact of carbon additions due to inputs from cover 

crops, however, this experiment brought to light important trends in soil aggregate 

distribution as it relates to crop phase.  As a result of these findings, the objective of the 

current study was developed. 

The aim of this study is to assess the associations between soil aggregate 

distribution and the aggregate C content of differing aggregate size classes with crop 

phase in the long-term organic grain rotation at WICST.  We hypothesized that 1) crop 

phases with increased organic matter inputs will exhibit a greater proportion of soil 

aggregates in the macroaggregate size class as compared to phases with lower organic 

matter inputs; and 2) observed differences in aggregate distribution by crop phase will 

result in reallocation of SOC among soil aggregate size fractions.  Reallocation will lead 

to shifts in aggregate C content in aggregates of the same size resulting from short-term 

changes in agricultural management, such as crop phase differences within a rotation.   

 

Materials and Methods 

 

Site Description 

 

The study was conducted at the Wisconsin Integrated Cropping Systems Trial  
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(WICST), located at the University of Wisconsin Arlington Agricultural Research Station 

in Columbia County, WI (43 1̊8’18”N, 89 1̊9’48”W).  The soil at WICST is classified as 

a Plano silt-loam, a Fine-silty, Mixed, Superactive, Mesic Typic Argiudolls (USDA 

NRCS Soil Taxonomy) formed over a parent material of alluvial loess deposits.  Average 

annual temperature at the Arlington Agricultural Research Station is 6.9 C̊, with an 

average minimum of 0.5 C̊ and an average maximum of 13.3 C̊. Annual precipitation 

averages 869 mm, with the majority (64%) occurring in the spring and summer (1981-

2010, National Climatic Data Center).  WICST, established in 1990, is a long-term 

cropping systems trial designed to assess the productivity, profitability, and 

environmental impacts of two different agricultural enterprise types under varying crop 

diversity levels (Posner et al., 1995).  These two enterprise types represent cash-grain as 

well as dairy forage production strategies commonly found in Wisconsin and the upper 

Midwest.  Prior to cultivation (ca 1850), deep-rooted tallgrass prairie vegetation was 

dominant in the region.  In the mid-1800s, the predominant agricultural use was 

continuous wheat production which later shifted to livestock feed as the dairy industry of 

Wisconsin grew.  From the 1960s until its establishment, the WICST site had been 

cultivated with an alfalfa (Medicago sativa L.)-corn (Zea mays L.) rotation, using dairy 

manure as a nutrient source (Posner et al., 1995).  In 1989, the trial was planted to corn to 

achieve soil homogenization and improve blocking accuracy based on yield variability. 

WICST is a randomized complete block design consisting of four replications of 

each of six cropping systems.  All phases of each cropping system are present in a year.  

Of the four total replicates present at WICST, three were sampled in this study as one 
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replicate (block two of four) has consistently demonstrated soil properties inconsistent 

with those of the other three replicates and is susceptible to frequent flooding, potentially 

adding additional compounding factors to soil properties.  Therefore, block two is not a 

good representation of the site as a whole (G.R. Sanford, personal communication, 2016).  

The six cropping systems at WICST represent cash-grain and dairy forage enterprises, 

with conventional and organic representatives of each.  Plots are 0.3 ha in size.  Our 

study was carried out in just one of these six cropping systems, an organically-managed 

cash-grain rotation.  This rotation is three years in length, with a crop sequence of corn, 

soybean [Glycine max (L.) Merr], and winter wheat (Triticum aestivum L.).  The winter 

wheat phase includes a mixed oat (Avena sativa L.) and berseem clover (Trifolium 

alexandrium L.) cover crop planted after wheat is harvested. This gave us three replicates 

with three crop phases per replicate, or nine experimental plots total.   

Annually, the organic cash grain cropping system receives an application of 

composted pelletized poultry manure in spring of both the corn and wheat phases.  The 

corn phase receives poultry manure at a rate of 4.48 Mg ha-1 while the wheat phase 

receives 2.24 Mg ha-1. A combination of tillage and cultivation methods are used for field 

preparation, weed control, and post-harvest field management.  Specific tillage and 

cultivation activities, and the timing of activities, can be found in Figure 1.1.  All crop 

phases are field cultivated prior to planting.  Corn and soybean phases receive several 

rotary hoe or tine-weeding events for weed control, as well as several in row cultivations.  

Plots are chisel plowed in fall after corn and soybean harvest, and in summer after wheat 

harvest prior to cover crop planting.  Cover crops are terminated during the field 

cultivation event preceding corn planting in spring.  At minimum, corn and soybean 
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phases receive six tillage and/or cultivation events during the year, and the wheat phase 

receives two to three.  

Tillage and Cover Crop Split-Plot Treatments 

This study was focused on the impact of specific crop phases on soil aggregate 

distribution and associated aggregate C content.  However, during the years we sampled, 

an experiment designed to evaluate the impact of increased cover crop intensity and 

decreased tillage intensity on organic row crop systems’ ability to store soil C and 

microbial community composition was overlaid on our sampling area.  Six treatments of 

varying cover crop and tillage intensities were randomly applied in a split-plot design 

with 4.6 m x 4.6 m split plots overlaid on each of the nine main plots.  The experimental 

treatments consisted of varying combinations of biomass additions to the soil through 

intensified use of cover crops at specific points in the rotation, as well as reduced tillage 

in certain portions compared with control treatments which did not include additional 

cover crops or reduction of tillage.  Specifics of split-plot treatments applied can be found 

in Table 1.1. Intensification of cover crop usage included planting a cereal rye (Secale 

cereale L.) after harvest of the corn phase in place of a no cover crop control, and using a 

high-biomass sorghum (Sorghum bicolor L.) after the wheat phase instead of the control 

oat cover crop.  Both the sorghum and oat cover crops following the wheat phase were 

interseeded with berseem clover. Oat and sorghum cover crops were terminated with 

tillage prior to corn planting. Tillage reduction using rolled-crimped rye was 

implemented prior to the soybean phase, with experimental subplots receiving no tillage 

and being planted to soybean with a no-till drill. In treatments that did not include no-till 
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soybean and a standing rye cover crop remained, rye was terminated with tillage prior to 

soybean planting. For a visual representation, see Figure 1.2.  

Soil Sampling 

 Baseline soils were sampled after harvest of wheat, soybean and corn in 2014 

(July, September, and November respectively).  In 2015, soil samples from each 

treatment were collected in late October at the end of the growing season, following 

tillage and planting of the rye cover crop in the corn phase, planting of wheat in the 

soybean phase, and standing cover crop senescence in the wheat phase.  At each sampling 

event, five soil cores 15 cm deep and 1.9 cm in diameter were composited per sub plot, 

and placed immediately in a cooler until they could be stored at 4 C̊. Within two weeks 

of sampling, each sample was picked free of visible plant residues and rocks prior to 

further processing which included sieving to 2 mm. Samples were stored frozen at -20 C̊ 

to retain field moisture as well as viability of microbial residues to be used in community 

analysis, the applications of which are covered in Chapter II. 

Aggregate Fractionation 

Wet-Sieving (Macroaggregates, microaggregates, and silt and clay) 

 Samples were removed from the freezer and placed in a refrigerator at 4 C̊ to 

thaw for a minimum of 24 hr before aggregate fractionation.  A small amount (15-20 g) 

of each sample was removed and dried in a 60 C̊ oven until the soil weight stabilized to 

determine volumetric moisture content.  The aggregate fractionation technique used is a 

simplified version of that employed by Six et al. in 1998 (Figure 1.3, step A), and similar 

to the method in Cates et al. (2016).  A 250 µm mesh sieve was set within a large metal 
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basin.  Deionized water (DI) was added to the basin until the water level was 

approximately 2 cm above the sieve’s mesh.  An 80 g subsample was carefully sprinkled 

onto the 250 µm mesh sieve.  The soil was allowed to soak for 5 min, then the sieve was 

moved up and down in the water-filled basin approximately 3 cm at a slight angle at a 

rate of 25 times per min for 2 min.  Material that washed through the sieve was collected 

in the large metal basin, and any particles stuck to the outside of the sieve were carefully 

washed into the basin with a squeeze bottle containing DI.  Macroaggregate (M) soil 

particles (>250 µm) remaining in the sieve were washed into a pre-weighed aluminum 

pan for drying at 60 C̊.  The soil particles and water that were retained in the first basin 

were poured into a 53 µm mesh sieve nested within a second large metal basin.  If the 

water level was not sufficient, DI was added until the water level was 2 cm above the 

sieve’s mesh.  The 53 µm sieve was then moved up and down approximately 3 cm at a 

slight angle 25 times per min for 2 min. Again, material that had washed through the 53 

µm mesh was collected in the second metal basin and fine soil particles stuck to the 

outside of the sieve were carefully washed into the basin.  Microaggregate (m) soil 

particles (53-250 µm) remaining in the sieve were rinsed into a pre-weighed aluminum 

pan for drying at 60 C̊.  The smallest silt and clay (s+c) soil particles (<53 µm) that had 

collected in the second basin were also rinsed into their own pre-weighed aluminum pan 

for drying at 60 C̊.  

Microaggregate Isolation (Coarse particulate OM, occluded microaggregates, and 

occluded silt and clay) 

 

 The M fraction was further separated into coarse particulate organic matter 

(cPOM), occluded microaggregates (Mm) and occluded silt and clay (Ms+c) (Six et al., 
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2002; Figure 1.3, step B).  From each dried M sample, 15 g of soil were placed in a 

beaker containing approximately 50 mL of DI for 20 min.  After soaking, the slurry was 

poured into a microaggregate isolator (as described in Six et al., 2002; built by David 

Sloan, UW-Madison Department of Soil Science) containing a 250 µm mesh circle with 

50 metal beads at the bottom.  The isolator, with a constant but slow flow of DI, was 

shaken for 5 min to disrupt the macroaggregate structure, allowing fine soil particles to 

move through the mesh and collect in a (third) metal basin.  Once shaken, the 250 µm 

mesh was rinsed, and cPOM (>250 µm) was collected in a pre-weighed aluminum pan 

for drying at 60 C̊.  The soil particles and water that passed through the 250 µm mesh 

circle and into the third metal basin were poured into a 53 µm mesh sieve nested within a 

final (fourth) metal basin.  If the water level was not sufficient, DI was added until the 

water level was 2 cm above the sieve’s mesh.  This sieve was moved up and down at a 

slight angle 25 times per min for 2 min.  Soil particles passing through the sieve but 

remaining on the outside of the sieve were rinsed carefully into the fourth basin.  The 53-

250 µm Mm fraction remaining in the 53 µm sieve were washed into a pre-weighed 

aluminum pan for drying at 60 C̊.  The Ms+c fraction (<53 µm) and water that collected 

in the fourth basin were rinsed into a pre-weighed aluminum pan for drying at 60 C̊.  For 

a visual representation of fractionation setup and equipment, see Appendix 1. 

Aggregate proportion calculations   

 Once all fractions were separated and dried in a 60 C̊ oven until their weights 

were stable, they were each weighed in the aluminum pan and placed in Whirl-Pak™ 

bags for short-term storage.  Dry soil weight was calculated by subtracting the known 
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weight of the pan from the total weight after drying. Aggregate distribution was 

determined by calculating the summed total weight of all dried fractions from one subplot 

sample, and dividing each fraction’s weight by the sum total to obtain the proportions.  

Proportions of soil aggregate fractions were not independent of one another, as 

proportions in each sample were calculated from the same total dry soil weight and must 

total that dry weight. A larger proportion of one soil fraction would lead to lower 

proportions of other fractions.  Free aggregate fraction proportions (M, m, s+c) were 

calculated as follows: 

ὪὶὩὩ ὥὫὫὶὩὫὥὸὩ ὴὶέὴȢ
ὪὶὩὩ ὥὫὫὶὩὫὥὸὩ Ὠὶώ ύὸȢ

ὸέὸὥὰ ίὸὩὴ ὃ ίέὭὰ Ὠὶώ ύὸȢ
 

Proportions of fractions occluded within M (cPOM, Mm, Ms+c) were calculated as 

follows: 

έὧὧὰόὨὩὨ ὥὫὫὶὩὫὥὸὩ ὴὶέὴȢ
έὧὧὰόὨὩὨ ὥὫὫὶὩὫὥὸὩ Ὠὶώ ύὸȢ

ὸέὸὥὰ ίὸὩὴ ὄ ίέὭὰ Ὠὶώ ύὸȢ
ὓ ὴὶέὴȢ 

Aggregate SOC Content 

  

 Small (~100 mg) samples of each dried soil fraction were collected into 2 mL 

microcentrifuge tubes containing a 4 mm stainless steel ball bearing.  The tubes were 

ball-milled for 15 min until all samples were ground to a fine flour like powder.  After 

shaking, 8-10 mg of each sample was measured into a 9 x 5 mm tin capsule.  Tins were 

analyzed by flash combustion using a Flash EA 1112 CN Automatic Elemental Analyzer 

(Thermo Finnigan, Milan, Italy) to assess C content of each sample.  As there is not an 

appreciable amount of inorganic C present in the soil at WICST, the entire concentration 

of C determined through this analysis is assumed to be SOC (Paul et al., 2001). 
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Estimation of C Inputs 

 Estimates of C inputs for 2014 and 2015 were calculated using methods employed 

by Jokela et al. (2011), Sanford et al. (2012), and Cates et al. (2016).  Aboveground C 

inputs were calculated based on existing harvest indices and belowground inputs from 

existing root:shoot ratios and rhizodeposition estimates (Bolinder et al., 2007).  Green 

manure inputs in the wheat phase and manure moisture content were not collected in 

2014 and 2015.  For these years, green manure inputs and manure moisture content were 

estimated using average values of data collected between 2009-2013 from Jokela et al. 

(2011), Sanford et al. (2012), and Cates et al. (2016).  Aboveground C inputs were 

classified as post-harvest crop residues and any green or animal manures used, while 

belowground C inputs consisted of root residues as well as root exudates.  

Statistical Analysis 

Aggregate distribution and aggregate carbon content data were analyzed 

separately by soil fraction using an RCBD in PROC GLIMMIX in SAS version 9.4 (SAS 

Institute Inc., Version 9.4, Cary, NC).  For the purpose of this study, we were primarily 

concerned with the main effect of crop phase on soil aggregate distribution and aggregate 

carbon content.  This study was carried out over a period of two years instead of a single 

year, therefore we tested the potential effects of year. Our full model included crop, year, 

and the crop × year interaction as fixed effects.  Initial statistical analyses that included 

the six split-plot treatments of the overlaid experiment described in Table 1.1 did not 

significantly affect aggregate distribution and had minimal effects on aggregate C content 

that may also be explained by spatial variability.  However, removing these split-plot 

treatment effects from our models entirely resulted in residual heteroscedasticity.  
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Therefore, split-plot treatments were included as covariates in the general analysis of the 

main effect of crop phase.  These treatments will be henceforth referred to as covariates. 

Inclusion of covariates increased residual homoscedasticity relative to the model 

excluding this covariate. Block and the block × crop interaction were included as random 

effects.  Ultimately, two response variables in the GLIMMIX models were considered: 

soil aggregate distribution based on aggregate dry weight proportions and soil aggregate 

C content.   

As the year × crop phase interaction was significant in many cases, the SLICE 

and SLICEDIFF statements were included in the LSMEANS line of code to separate out 

effects of crop phase for each individual level of year (2014 and 2015).  Slicing by year 

was done as the sampling time differences between the two years was a likely source of 

the significant year × crop phase interaction and comparing the two years directly with 

these sampling time differences was not possible.  Slicing by year allowed for an in-depth 

investigation as to why crop phase interactions with year may have been significant.  

Transformation of the response variables was only used where necessary to fit 

assumptions of normality.  It was determined that for all models of aggregate distribution, 

a normal (Gaussian) distribution provided the best fit.  The log-normal distribution (log-

transformation of experimental data) provided the best fit for all models analyzing 

aggregate carbon content. Means obtained through the log-normal distribution cannot be 

back transformed in PROC GLIMMIX to meaningful estimates of actual experimental 

means.  Interpretation of the aggregate carbon content data is therefore limited to relative 

comparisons between crop phases.  A Tukey adjustment was performed to more 

accurately separate means and limit type I error at the α = 0.05 level. 
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To determine the strength of the relationship between crop phase C inputs and 

macroaggregation, PROC CORR and PROC REG were used in SAS version 9.4.  

Correlation coefficients were calculated using proportion of macroaggregates and crop 

phase C inputs as variables.  A linear regression was performed with proportion of 

macroaggregates as the dependent variable and total crop phase C inputs as the 

independent variable.  Data was checked for influential points using Cook’s distance and 

residuals vs. fitted plots. 

Results 

 

Growing Conditions 

 

 Average annual temperature at Arlington, WI in 2014 was 7.1 C̊, with a minimum 

of 1.7 C̊ and a maximum of 12.4 C̊ (NOAA Online Weather Data, National Weather 

Service). Overall, temperatures during the growing season (April-October) were within 

the normal observed range while winter temperatures (January-March) were below the 

long-term average from 1981-2010. Annual precipitation in 2014 totaled 897 mm, just 

above the long-term average of 869 mm (NOAA Online Weather Data, National Weather 

Service). Accumulation of precipitation during the mid-late growing season (June-

October) was above normal.  In 2015, the average annual temperature was 8.9 C̊, with a 

minimum of 3.6 C̊ and a maximum of 14.3 C̊ (NOAA Online Weather Data, National 

Weather Service).  Like 2014, the majority of the growing season (April-October) fell 

within the normal temperature range, while winter temperatures (January-February) were 

cooler than the long-term average. However, the maximum daily temperature rose above 

the long-term average in many instances.  Annual precipitation in 2015 totaled 1006 mm, 
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well above the long-term average (NOAA Online Weather Data, National Weather 

Service) but for the majority of the growing season, accumulation totals were below 

normal.  The above-average precipitation in 2015 occurred predominantly after the 

growing season, in late October-December. 

Cropping System Yields and Estimated Above and Belowground C Inputs 

 

Grain yield in the corn phase averaged 10.5 Mg ha-1, the same as the previous 5-

year average (2009-2013) of 10.5 Mg ha-1.  Soybean yield averaged 3.6 Mg ha-1, slightly 

larger than the previous 5-year average of 3.2 Mg ha-1.  Grain yield for wheat was only 

available in 2015 due to a crop failure in 2014 resulting in the crop harvested for silage.  

Silage yield from the wheat plots in 2014 averaged 4.34 Mg ha-1. The average wheat 

grain yield in 2015 was 4.8 Mg ha-1, slightly larger than the previous 5-year average of 

4.3 Mg ha-1.  Wheat straw yield in 2015 averaged 3.83 Mg ha-1, approximately 30% 

greater than the previous five-year average of 2.75 Mg ha-1.  Yield and additional 

cropping system information including soil properties can be found in Table 1.2. 

Average annual C inputs for 2014-2015 were 7931 kg ha-1 total in the corn phase, 

approximately 2.5 times the total C input the soybean and wheat phases received.  Total 

C inputs in the soybean phase averaged 3211 kg ha-1, while inputs in the wheat phase 

averaged 3131 kg ha-1 annually.  Aboveground (AG) C inputs were 2.5 times greater in 

the corn phase versus soybean and wheat, while belowground (BG) C inputs were 

approximately 2 times greater for corn over soybean and 3 times greater for corn over 

wheat.  The values of above- and belowground C inputs can be found in Table 1.3. 
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Soil Aggregate Distribution Across Crop Phases 

 Crop phase had a significant effect on aggregate distribution in both 2014 and 

2015 (Table 1.4, Figures 1.5 and 1.6).  The year × crop interaction was also significant in 

all six soil aggregate fractions.  In order to examine the nature of the year × crop 

interaction, models separated the effect of crop phase over each level of year (2014 and 

2015).  The proportions of the various aggregate fractions were not independent.  

Specifically, the abundance of M was correlated to the free and occluded fractions, with 

increased macroaggregation leading to smaller proportions of other free fractions, and 

larger proportion of fractions occluded within these large particles.   

In 2014, aggregate distribution was affected by crop phase for all fractions except 

cPOM.  Soil in the corn phase consisted of higher proportions of M than either the 

soybean or wheat phases by over 25% (p < 0.0001).  Concomitantly, significantly higher 

proportions of the Mm and Ms+c fractions were seen in the corn phase versus the 

soybean or wheat phases along with the larger proportion of M.  The proportion of Mm in 

the corn phase was also approximately 25% higher versus soybean and wheat (p < 

0.0001), and Ms+c was present in a proportion over 30% greater in corn versus soybean 

and wheat (p < 0.0001).  Significantly lower proportions of the free m and s+c fractions 

were observed in the corn phase versus soybean and wheat.  The soybean and wheat 

phases contained four times the free m of the corn phase (p < 0.0001), and nearly two 

times the free s+c (p < 0.0001). The aggregate distribution of the soybean and wheat 

phases did not differ significantly from each other in 2014. 

 In 2015, significant differences in aggregate distribution among crop phases were 

present, but were different from those observed in 2014. All six aggregate fractions 
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showed a significant effect of crop phase, however in this year the corn and soybean 

aggregate distributions did not differ with the exception of the cPOM fraciton.  For the 

cPOM fraction, the corn phase had an approximately 15% greater proportion than the 

soybean phase (p = 0.016), while wheat did not differ from either of the other two crop 

phases.  Both corn and soybean contained a greater proportion of M than the wheat phase 

by about 10% (p < 0.0001).  To again emphasize the dependence of other soil fractions 

on the proportion of M, approximately 25% less free m was observed in corn and 

soybean versus the wheat phase (p < 0.0001), while occluded fraction proportions (Mm 

and Ms+c) were significantly increased by approximately 10% in corn and soybean 

versus wheat (p = 0.013 and 0.004 respectively for Mm; p = 0.0002 and 0.008 

respectively for Ms+c).  The free s+c proportion was increased by over 15% in wheat 

versus corn and soybean (p = 0.003 and 0.006 respectively), in contrast with 2014 

findings where lower proportions of this fraction were observed alongside increased M 

proportions. 

Aggregation Relationship with C Inputs 

The relationship between total annual C inputs and macroaggregation was 

positive. The correlation coefficient was 0.6941 (p = 0.001), indicating that 

macroaggregation increased with total C inputs.  A positive relationship between AG and 

BG C inputs with macroaggregation was also observed (correlation coefficients = 0.6831 

and 0.6826 respectively, p = 0.0018 in both cases), though the relationship was not as 

strong as with total C input.  Though the relationship between BG C input and 

macroaggregation was not as strong as with total C, BG inputs represent a more accurate 

estimation of within-year C inputs that may affect soil properties of a given crop phase.  
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AG inputs are commonly incorporated at the end of a growing season taking additional 

time to decompose, and as such their effects might not have an impact on soil properties 

until subsequent years (and crop phases in a rotation). Thus, BG C input was used as the 

metric to determine a relationship between C inputs and macroaggregation.  

 Soil Aggregate Carbon Content Across Crop Phases 

  

Crop phase effect alone (when considered over both years) on aggregate C 

content was not significant for any of the six aggregate fractions investigated, but the 

year × crop interaction was always highly significant (Table 1.5; p ≤ 0.0001).  Models 

separated the effect of crop phase over each level of year (2014 and 2015) to determine 

the nature of this interaction.  Crop phase effects on aggregate C content were 

inconsistent between 2014 and 2015.  Aggregate C content data was log-transformed for 

improved model fit, and as such, mean comparisons among crop phases are only 

applicable within the framework of this study. 

In 2014, all soil aggregate fractions were significantly impacted by crop phase.  C 

content in cPOM was between 20-30% greater in corn and soybean versus wheat (p = 

0.002 and < 0.0001 respectively), while corn and soybean were not different from one 

another.  In the M fraction, corn and soybean were significantly different at the 0.05 level 

with soybean having a larger aggregate C content by approximately 15% (p = 0.046).  

Wheat did not differ from either of the other two phases.  The aggregate C content in the 

occluded Mm fraction was significantly greater in soybean versus corn and wheat but 

corn and wheat did not differ significantly.  For Mm, C content was 15-20% greater in 

soybean versus corn and wheat (p = 0.049 and 0.004 respectively).  Aggregate C content 

in the occluded Ms+c was significantly different between soybean and wheat, with 
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soybean being greater by approximately 20% (p = 0.017) while corn did not differ from 

either of the other two phases.  In the free m fraction, corn and soybean did not differ in 

their aggregate C content while wheat differed from both, having a lower aggregate C 

content by over 15% (p = 0.005 vs. corn and 0.030 vs. soybean).  In the final soil 

aggregate fraction, free s+c, C content differed between corn and wheat, with corn having 

a greater C content by nearly 25% (p = 0.0004).  Soybean did not differ from the other 

two phases. 

 Crop phase also had significant effects on aggregate C content in 2015, though 

the effects were not the same as observed in 2014.  In the cPOM fraction, both soybean 

and wheat phases had a greater C content by over 35% versus corn (p < 0.0001).  

Soybean and wheat phases did not differ from one another.  For the M fraction, corn had 

a reduced C content by over 20% versus wheat (p = 0.004) while soybean did not differ 

from the other two phases.  The aggregate C content in the occluded Mm fraction was 

greater by over 15% in wheat versus corn (p = 0.009) and marginally greater (p = 0.046) 

in wheat versus soybean.  Free m had a significant effect of crop phase on C content 

between wheat and corn, with wheat being greater by over 15% (p = 0.019) while 

soybean did not differ from the other two phases.  Finally, aggregate C content of the 

occluded Ms+c and the free s+c fractions did not differ significantly among crop phases.  

 

Discussion 

 

 This study provides additional evidence that soil aggregation, particularly on the 

macroaggregate level, is sensitive to agricultural management and therefore can vary 

among crop phases with different annual management practices.  Despite studies 
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corroborating this finding (e.g. Bach and Hofmockel, 2016; Bossuyt et al., 2001; 

Chivenge et al., 2011), many published studies investigating SOC sequestration and soil 

aggregate dynamics do not incorporate strategies for data collection on a year-by-year (or 

crop-by-crop) basis.  A review of the literature suggests that experiments carried out in 

systems focused around crop rotations often involve a common practice of collecting data 

at a single time point, or within only one crop phase (Andruschkewitsh et al., 2013; 

Birkhofer et al., 2008; Kong et al., 2005; Padbhushan et al., 2016; Pulleman et al., 2003; 

Jokela et al., 2011; Cates et al., 2016).  Though less time- and resource-consuming, this 

limited sampling strategy encourages the assumption that soil properties, including 

SOM/SOC content and soil aggregation, are relatively constant throughout each crop 

rotational phase, ignoring the variability associated with management strategies within 

different crop phases. Sampling during each crop phase may provide an improved 

assessment of the sensitivity of the soil properties across the cropping system, with the 

increased frequency of sampling improving our understanding of variability in aggregate 

distribution and C cycling over both short and long-term time frames. 

Soils collected from the corn phase alone in 2014 and both the corn and soybean 

phases of the crop rotation in 2015 demonstrated the greatest degree of aggregation (as 

measured by the proportion of soil in macroaggregates), containing nearly 90% 

macroaggregates in 2014 and over 70% in 2015.  Jokela et al. (2011) found 

macroaggregation values of 66-86%, depending on soil depth, in the corn phase at the 

WICST, and Six et al. (2000b) found average macroaggregation was 85% among four 

long-term agricultural experiments in the central US, supporting our findings.  This value 

is double the proportion of macroaggregation observed by Cates et al. (2016), who found 
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that the organic grain rotation contained ~40% macroaggregates.  However, soil sampling 

in Cates et al. was performed after wheat harvest, which more closely aligns with the 

wheat phase where aggregation values were markedly lower in this study.   

Both the corn and soybean phases in the organic grain rotation at the WICST 

receive multiple and frequent tillage and cultivation passes (~6 annually) to prepare the 

seedbed for planting and manage weeds without synthetic herbicides (Posner et al., 

2008). With the high degree of soil disturbance during these cropping phases, the large 

proportion of macroaggregates observed was unexpected.  The high level of aggregation 

observed in these heavily-disturbed crop phases at the WICST indicates that tillage is not 

the only factor controlling soil structural stability and aggregate formation in the organic 

rotation.  Other factors, such as the quantity of C inputs, likely influence the formation 

and stability of soil aggregates.  In the organic cash grain rotation at WICST, the amount 

of C input to the soil is largely dependent on crop phase. The 2014 and 2015 estimates of 

C input to each phase, calculated based on methods previously employed by Jokela et al. 

(2011), Sanford et al. (2012), and Cates et al. (2016), indicate that corn received up to 2.5 

times the totalC input of soybean and wheat.  Reasons for this include increased biomass 

accumulation during the growing season as well as greater animal manure inputs. 

Compared with soybean and wheat, the corn phase produces a great deal more biomass, 

both above and belowground, which translates to a greater amount of residues (and 

therefore C) left behind once the main crop is harvested.   

Of even greater importance in terms of C input effect on soil aggregation is the 

amount of belowground C input each crop phase receives. Corn receives, on average, 

twice the belowground C that soybean receives, and three times that of wheat.  



31 

 

Belowground plant biomass is particularly influential in formation and maintenance of 

soil aggregate structure.  Blankinship et al. (2016) showed that decaying plant roots 

played a key role in stabilizing macroaggregates, especially in dry soil conditions. 

Additionally, Cates et al. (2016) demonstrated a positive relationship between 

belowground biomass C content and the C content of macroaggregates, indicating that 

the binding of macroaggregates is affected by recent belowground biomass additions.   

  Along with increased belowground biomass contributions, the corn phase 

receives twice the composted poultry manure received by the wheat phase, while soybean 

receives no manure. Applications of manures (both animal- and plant-based) are known 

to increase SOC content of soils (Birkhofer et al., 2008; Diacono and Montemurro, 

2010).  Organic cropping systems receive additional benefits from the more routine use 

of plant- or animal-based amendments over soils in conventional systems, as the use of 

synthetic fertilizers in conventional agriculture can reduce aggregate stability (Williams 

and Petticrew, 2009).  Farmyard manure and plant composts have been shown to increase 

aggregate stability in agricultural soils after several years of use (Dorado et al., 2003; 

Tejada et al., 2009).  Elevated C inputs, through increased biomass accumulation and 

manure usage, are a potential cause of enhanced soil aggregation observed in the corn 

phase.  Additional factors aside from C input quantity must also play a role in soil 

aggregation in this rotation, however, as high aggregation values were observed in the 

soybean phase in 2015 which receives greatly reduced C input compared to corn.   

Spatial separation of soil samples in each crop phase between 2014 and 2015 is 

likely a contributing factor to the significant year and year × crop effects in both the 

aggregate distribution and aggregate C content data.  As a 3-year corn-soybean-wheat 



32 

 

crop rotation, experimental plots progress through their rotation within the corresponding 

plot in each replication. As such, the physical location of the plots sampled for one crop 

phase in 2014 would not be the same plots sampled in 2015; for example, plots in which 

corn was grown in 2014 would have soybean growing in 2015, therefore the 2015 corn 

phase samples would be taken from another location in the field (the plots where wheat 

was grown in 2014). This impact of spatial variation on soil physical properties has been 

documented in previous studies (Reza et al., 2016; Strudley et al., 2008).  

 Though evidence exists that SOC dynamics are sensitive to many management 

and environmental factors, we did not observe many consistent effects of crop phase on 

aggregate C content in our study.  While effects of crop phase on aggregate C content 

were observed within each year individually, these results often did not hold between the 

two years.  Instead, patterns of aggregate C content were observed in some cases from 

2014 to 2015 in successional crop phases.  For example, in the cPOM fraction, corn and 

soybean had the highest C content in 2014 followed in 2015 with the soybean and wheat 

phases (the phases that follow corn and soybean in rotation respectively) having the 

highest C content.  Additional examples include both the m and Mm fractions, where 

soybean was observed to have the greatest C content in 2014, followed by wheat having 

the greatest C content in 2015.  The only consistent pattern observed was in the M 

fraction, with corn having the lowest C content in both years though it did not differ 

significantly from wheat in 2014 or soybean in 2015.  Such patterns make it difficult to 

attribute changes in aggregate C content to crop phase differences alone, and instead 

suggest that spatial variation (i.e. differences between experimental plots) has a greater 

impact on this soil property.  Thus, these results did not support our second hypothesis 
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that observed differences in aggregate distribution would result in reallocation of SOC 

among soil aggregate size fractions, and therefore shifts in aggregate C content in 

aggregates of the same size. This lack of findings can be attributed to the long-term and 

well-established nature of this crop rotation at WICST that has undergone relatively few 

management changes in the past 26 years.  It is likely that the organic grain rotation at 

WICST has reached equilibrium among its three crop phases, without noticeable C 

content changes from year to year (and therefore crop to crop) within plots, though long-

term (20 years) losses in SOC have been previously studied at this site (Sanford et al., 

2012). The nature of cPOM may have also contributed to the observed variability, as this 

fraction is mainly composed of plant materials at varying levels of decay (and therefore 

varying chemical composition) that was occluded within macroaggregates (Six et al., 

2002).  When analyzing cPOM for C content, the composition can vary depending on 

whether a sample contained fresher or slightly older plant material.  

 

Conclusions 

 

 This study provides evidence that aggregate distribution differs within a crop 

rotation dependent on crop phase.  The corn phase in 2014 and both corn and soybean 

phases in 2015 had the highest composition of macroaggregates, despite intense tillage 

practices.  The corn phase also had the largest quantity of C input to the soil, suggesting 

that C inputs may counteract the negative impacts of tillage, improving aggregate 

formation and stability in a given cropping system with intensive tillage events.  No 

consistent effect of crop phase between the two years on aggregate C content was seen.  
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It is likely this system reached an equilibrium among the three crop phases, and aggregate 

C content would not change dramatically from year to year.  

The dynamic nature of soil aggregation observed among crop phases within this 

crop rotation emphasizes the impact of agricultural management practices on sensitive 

soil properties such as soil aggregation and SOC content. Studies that compare cropping 

systems based on sampling at a single time point or during a single crop phase may 

overlook these nuances in aggregate and SOC dynamics, leading to over-generalizations 

or inaccurate conclusions. Such studies limit their frame of inference by ignoring 

potential differences that might exist in soil structural and chemical makeup between crop 

phases within rotations, or by assuming cropping system soil structure and chemistry are 

constant.  Reliance on a single phase of a rotation to represent an entire cropping system 

may lead to inaccurate characterizations, and therefore inaccurate management 

recommendations. Increased sampling frequency during multiple crop phases of a 

cropping system may provide an improved characterization of that system’s sensitive soil 

properties, allowing for more accurate understanding of SOC fluxes and soil aggregate 

stabilization. 
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Tables and Figures 

 

Table 1.1 Detailed description of cover crop and tillage split-plot treatments in the 

organic grain rotation at the WICST, indicating cover crop usage, type and tillage regime. 

Control treatment (1) is representative of previous management practices used in the 

organic grain rotation at WICST.  Shaded cells indicate where a treatment differs from 

the control. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Crop Phase I Crop Phase II Crop Phase III 

Trtmt. Till Crop Till Cover Till Crop Till Crop Till Cover 

1 Yes Corn Yes None N/A Soybean Yes Wheat Yes Berseem clover/ 

Oat 

 

2 Yes Corn Yes None N/A Soybean Yes Wheat Yes Berseem clover/ 

Sorghum 

 

3 Yes Corn Yes Rye Yes Soybean Yes Wheat Yes Berseem clover/ 

Oat 

 

4 Yes Corn Yes Rye No Soybean Yes Wheat Yes Berseem clover/ 

Oat 

 

5 Yes Corn Yes Rye Yes Soybean Yes Wheat Yes Berseem clover/ 

Sorghum 

 

6 Yes Corn Yes Rye No Soybean Yes Wheat Yes Berseem clover/ 

Sorghum 
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Table 1.2 Various yield and soil parameters by crop phase, averaged from 2014-2015 

measurements. Numbers in parentheses indicate standard errors of displayed means. 

Crop 

Phase 

Phase parameter 

 Grain Yield 

(Mg ha-1) 

Forage Yield 

(Mg ha-1) 

Soil P 

(ppm) 

Soil K 

(ppm) 

SOM 

(ppm) 

Soil pH 

       

Corn 10.46(0.49) - 41(3.2) 112(9.8) 4.6(0.17) 6.9(0.07) 

       

Soybean 3.58(0.07) - 58(9.0) 147(15.2) 4.9(0.14) 6.7(0.11) 

       

Wheat 

 

4.83(0.08)† 4.09(0.30)‡ 69(8.9) 157(21.4) 5.3(0.28) 6.7(0.12) 

†Wheat grain yield based on 2015 average only; grain crop failure in 2014 resulted in all 

wheat being harvested for silage. 

‡Wheat forage yield averaged between silage harvest in 2014 and straw harvest in 2015. 
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Table 1.3 Average (2014-2015) C inputs by crop phase in the organic grain rotation at 

WICST. Where data was missing, average of values from 2009-2013 (Jokela et al., 2011; 

Sanford et al., 2012; Cates et al., 2016) were used in calculations of 2014 and 2015 C 

inputs. 

  Crop Phase Aboveground C Inputs      

(kg ha-1) 

Belowground C Inputs       

(kg ha-1) 

Total C Inputs                   

(kg ha-1) 

 

Corn 

 

5588(202)† 

 

2343(110) 

 

7931(312) 

 

Soybean 

 

2101(41) 

 

1111(22) 

 

3211(62) 

 

Wheat 

 

 

2472(22) 

 

659(87) 

 

3131(88) 

†Numbers in parentheses indicate standard errors of displayed means. 
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Table 1.4 Aggregate distribution by crop phase and year and associated p-values in the 

organic grain rotation at WICST, 2014-2015. 

†M = macroaggregates; m = microaggregates; s+c = silt and clay; cPOM = coarse 

particulate organic matter; Mm = occluded microaggregates; Ms+c = occluded silt and 

clay. 

‡ Numbers in parentheses indicate standard errors of the displayed means. 

 

 

 

 

 

 

 

 

 

 

 

Crop Phase 

and Year 

Soil Aggregate Fraction† 

 M m s+c cPOM Mm Ms+c 

 Proportion of dry soil weight, mg g-1 

 

Corn  

2014 

 

869(7.2)‡ 

 

49(4.2) 

 

 

81(6.1) 

 

 

11.5(0.44) 

 

484(6.6) 

 

374(5.1) 

 

Corn 

2015 

 

720(12.0) 

 

159(8.5) 

 

121(4.1) 

 

14.0(0.91) 

 

412(9.2) 

 

294(4.9) 

 

Soybean 

2014  

 

623(13.1) 

 

218(8.7) 

 

159(6.1) 

 

12.0(0.50) 

 

361(9.8) 

 

249(5.6) 

 

Soybean 

2015 

 

714(8.9) 

 

163(5.5) 

 

123(3.7) 

 

 

11.6(0.47) 

 

419(9.6) 

 

284(6.3) 

 

Wheat 

2014 
 

 

649(13.5) 

 

200(8.9) 

 

152(8.3) 

 

13.3(0.89) 

 

368(9.4) 

 

267(6.0) 

Wheat 

2015 

640(12.2) 217(7.6) 144(4.9) 13.5(0.86) 370(12.4) 

 

256(6.6) 

 

ANOVA p-values 

Crop 0.0002 0.0002 0.0004 0.1378 0.0054 0.0011 

Year 0.0168 0.0002 0.7423 0.1006 0.5933 <0.0001 

Year × Crop <0.0001 <0.0001 <0.0001 0.0310 <0.0001 <0.0001 
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Table 1.5 Aggregate carbon content by crop phase and year and associated p-values in 

the organic grain rotation at WICST, 2014-2015. 

Crop Phase 

and Year 

Soil Aggregate Fraction† 

 M m s+c  cPOM Mm Ms+c 

 SOC content of aggregates, g 100g soil-1 

 

Corn 

2014  

 

 

2.25(0.12)‡ 

 

2.84(0.10) 

 

 

2.19(0.10) 

 

 

7.63(0.26) 

 

 

2.45(0.13) 

 

 

1.68(0.09) 

 

Corn 

2015 

2.38(0.07) 2.38(0.06) 1.69(0.06) 5.88(0.50) 2.41(0.06) 1.60(0.03) 

Soybean 

2014  

2.66(0.15) 2.77(0.16) 2.00(0.18) 8.50(0.37) 2.86(0.16) 1.98(0.12) 

Soybean 

2015 

2.59(0.15) 2.55(0.13) 1.76(0.11) 9.34(0.54) 2.54(0.13) 1.70(0.09) 

Wheat 

2014 

2.25(0.09) 2.30(0.06) 1.65(0.08) 5.80(0.69) 2.30(0.07) 1.58(0.04) 

Wheat 

2015 

3.04(0.19) 2.93(0.21) 2.05(0.16) 9.31(0.38) 2.95(0.15) 1.95(0.12) 

ANOVA p-values 

Crop 0.1797 0.9259 0.4495 0.0591 0.3080 0.3822 

Year 0.0003 0.6535 0.1896 0.0240 0.1200 0.8793 

Year × Crop 0.0001 <0.0001 0.0001 <0.0001 <0.0001 <0.0001 

† M = macroaggregates; m = microaggregates; s+c = silt and clay; cPOM = coarse 

particulate organic matter; Mm = occluded microaggregates; Ms+c = occluded silt and 

clay. 

‡Numbers in parentheses indicate standard errors of the displayed means. 
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Figure 1.1 Tillage practices by crop phase in the organic grain rotation at WICST.  

Arrows are color-coded indicating type of tillage practice. 

  

 = Field cultivation = Rotary hoe or tine weed 

 

  

 = Cultivation = Chisel plow 
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Figure 1.2 Cover crop and tillage treatments applied to organic corn-soybean-wheat 

rotation at WICST.  Crops in the upper row are planted in spring/summer, while crops in 

the bottom row are fall-planted.  Crops marked with a green line indicate main crops, and 

crops in red indicate cover crops.  Tillage is indicated with ovals.  A blue color indicates 

management changes associated with the ‘sustainable intensification’ study. 

†With no-till soybean treatments, a roller-crimper was the method of termination for the 

rye cover crop. 
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Figure 1.3 Soil aggregate fractionation technique, adapted from Six et al. (1998).  Figure 

adapted from G.R. Sanford. 
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Figure 1.4 Macroaggregation as affected by belowground C inputs in the organic grain 

rotation at WICST. Belowground C inputs represent 2014 and 2015 averages, calculated 

based on methods used in Jokela et al. (2011), Sanford et al. (2012), and Cates et al. 

(2016).  Macroaggregation is measured in g macroaggregates g dry soil-1.  Filled shapes 

represent 2014 means, while unfilled shaped represent 2015 means. 
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Figure 1.5 Soil aggregate distribution of the organic grain rotation at WICST, 2014.  

Vertical bars indicate aggregate fractions that are occluded within macroaggregates; 

macroaggregate proportions can be determined by adding the 3 sections with vertical bars 

together.  Uppercase letters indicate significant differences in macroaggregate 

proportions (sum of sections with vertical bars) between crop phases, lowercase letters 

indicate significant differences in all other fractions between crop phases.  In 2014, no 

significant differences existed among crop phases in proportion of cPOM, therefore no 

lowercase letters are displayed for this fraction.  s+c = silt and clay, m = microaggregates, 

cPOM = coarse particulate organic matter, Ms+c = occluded silt and clay, Mm = 

occluded microaggregates. 
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Figure 1.6 Soil aggregate distribution of the organic grain rotation at WICST, 2015.  

Vertical bars indicate aggregate fractions that are occluded within macroaggregates; 

macroaggregate proportions can be determined by adding the 3 sections with vertical bars 

together.  Uppercase letters indicate significant differences in macroaggregate 

proportions (sum of sections with vertical bars) between crop phases, lowercase letters 

indicate significant differences in all other fractions between crop phases.  s+c = silt and 

clay, m = microaggregates, cPOM = coarse particulate organic matter, Ms+c = occluded 

silt and clay, Mm = occluded microaggregates. 
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Figure 1.7 Aggregate C content of soil fractions in the organic grain rotation at WICST, 

2014.  Lowercase letters indicate significant differences within fractions between crop 

phases. M = macroaggregates, m = microaggregates, s+c = silt and clay, cPOM = coarse 

particulate organic matter, Mm = occluded microaggregates, Ms+c = occluded silt and 

clay. 
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Figure 1.8 Aggregate C content of soil fractions in the organic grain rotation at WICST, 

2015.  Lowercase letters indicate significant differences within fractions between crop 

phases. M = macroaggregates, m = microaggregates, s+c = silt and clay, cPOM = coarse 

particulate organic matter, Mm = occluded microaggregates, Ms+c = occluded silt and 

clay. 
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CHAPTER II 

 

Impacts of Crop Phase on Microbial Community Composition in an Organic Cash Grain 

Rotation in Wisconsin, USA 

 

Abstract 

 

 Microbial community composition can affect soil aggregation and therefore soil 

organic carbon (SOC) stabilization.  Our previous work has shown that crop phase within 

an organic corn-soybean-wheat rotation significantly affected soil aggregate distribution, 

with heavily disturbed corn and soybean being significantly more aggregated than the 

less-disturbed wheat phase.  Here, we investigate whether microbial community 

composition is an underlying factor in the observed crop phase effect on soil aggregation.  

We assessed total lipid biomass, relative abundance of five separate microbial ecological 

groups, including gram-positive bacteria (Gm+), gram-negative bacteria (Gm-), 

arbuscular mycorrhizal fungi (AMF), saprotrophic fungi (SF), and actinomycetes, as well 

as microbial community composition through a principal component analysis (PCA) in 

three soil aggregate fractions in two years, 2014 and 2015.  These fractions included 

macroaggregates (> 250µm), microaggregates (53-250 µm), and silt and clay (< 53µm).  

We found significant differences among crop phases in total lipid biomass, ecological 

group relative abundance, and community composition, though all significant effects 

decreased with soil aggregate size.  In 2015 when sampling time did was the same across 

all three crop phases, wheat had the largest amount of lipid biomass, AMF relative 

abundance, and F:B ratio, while corn and soybean tended towards a larger relative 

abundance of Gm+, actinomycetes, and SF.  Results from 2014 where sampling time 

differed were not as consistent and varied with soil aggregate size. While our data 
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provides evidence that crop phase and its associated management can impact microbial 

community composition, we did not see a direct link between fungal abundance and soil 

aggregation within crop phase as we had predicted.  It is possible that crop phase 

management effects may carry over into the following season, influencing microbial 

community composition in the next phase of the crop rotation.  Additional sampling 

events to assess microbial community composition throughout the growing season would 

provide additional insight into microbial community shifts and impacts this may have on 

the soil aggregation process.  

 

Introduction 

 

 Improving the soil organic matter (SOC) content of agricultural soils is critical for 

continued productivity and sustainability of our food systems, particularly in light of 

increasing global populations and the threat of climate change (Lal, 2004).  Soil 

aggregation is a key factor contributing to long-term soil organic carbon (SOC) 

accumulation and related agricultural benefits through improved water infiltration, 

decreased erosion, and increased nutrient and water holding capacity.  Physical protection 

within aggregates allows SOC to become stabilized as it becomes inaccessible for 

microbial metabolic processes, therefore preventing release into the atmosphere as CO2 

(Rovira and Greacen, 1957; Six et al., 1998).  SOC is stored and stabilized long-term 

within microaggregates (Jastrow 1996; Six et al. 2004), defined as soil particles 53-250 

µm in diameter.  Stable microaggregates are formed within larger macroaggregates (soil 

particles defined as >250 µm in diameter) (Angers et al., 1997; Jastrow 1996; Oades, 

1984), using plant residues contained within as nucleation sites (Chung et al., 2008; Kong 
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et al., 2005).  Increasing macroaggregate stability and decreasing their turnover rates 

results in increased microaggregate protection and increased availability of nucleation 

sites (Six et al. 2000, 2004).  

 Biological processes that determine soil aggregate formation and stability are 

largely mediated by the soil microbial community.  The stability and formation of 

aggregates depends on the persistence of fungal and bacterial byproducts that bind them 

(Six et al., 2000; Tisdall and Oades, 1982).  Macroaggregate formation is mainly 

dependent on physical forces applied by fine plant roots and fungal hyphae, which 

enmesh and bind small soil particles (Bossuyt et al., 2001; Rillig and Mummey, 2006).  

Fungal and bacterial byproducts released within macroaggregates cause fine soil particles 

to be attached to plant residues, forming microaggregates (Golchin et al., 1994; Rillig and 

Mummey, 2006). Microbial byproducts that serve as aggregate binding agents include 

both polysaccharides and proteins, including the arbuscular mycorrhizal fungal (AMF) 

product glomalin (Rillig and Mummey, 2006; Six et al., 2004).  While studies have 

shown that bacterial byproducts contribute to aggregate stability (Carrasco et al., 2009; 

Oades, 1993), fungal byproducts are generally believed to enhance stability to an even 

greater degree, due to their more complex structure (Six et al., 2006). 

Shifts in microbial abundance and community structure can influence soil 

aggregation processes (Bossuyt et al., 2001).  Both agricultural management practices 

(e.g. fertilization, tillage, crop type) as well as environmental factors (e.g. soil type, 

temperature, and soil properties such as pH) can affect microbial community abundance 

and structure in soils (Girvan et al., 2003; Lauber et al., 2008; Ngosong et al., 2010).  Soil 

bacterial community composition tends to be most heavily impacted by soil type, while 
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fungal community composition is often driven by nutrient availability and fertilization 

(Girvan et al., 2003; Lauber et al., 2008; Suzuki et al., 2009).  Where soil type is held 

constant, however, agricultural management tends to have a larger effect on community 

structure than some environmental parameters such as temperature, moisture, and pH 

(Buyer et al., 2010).   

 Among the agricultural management practices that have the potential to influence 

microbial communities, tillage is among the most disruptive.  Tillage, while directly 

reducing soil aggregation through physical disturbance (Baker et al., 2007; Grandy and 

Robertson, 2006; Sheehy et al., 2015), can also indirectly and negatively affect the 

aggregation process by disrupting the microbial communities which drive aggregation.  

This reduces the soil’s ability to regain structure after disturbance efficiently as microbial 

communities vary in their ability to recover from disturbance (Allison and Martiny, 

2008).  Compared with reduced or no-tillage practices, conventional tillage can decrease 

total microbial biomass (Ghimire et al., 2014; Wortman et al. 2013), and is especially 

disruptive for the fungal portion of the community while favoring bacteria (Beare et al., 

1997; Wang et al., 2010).  Disruption or suppression of the fungal portion of the 

microbial community reduces formation of macroaggregates, while reducing bacterial 

populations does not have the same effect (Bossuyt et al., 2001).  While both fungi and 

bacteria play a role in the stabilization of soil aggregates, increased effectiveness in 

macroaggregate formation and long-term stability of fungal byproducts may make fungi 

the more beneficial component of the microbial community in terms of SOC stabilization 

and storage. 
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Not all farming practices that employ tillage as a management strategy necessarily 

affect the microbial community in a negative manner.  Organic farming, which often 

relies on tillage as a means to reduce weed pressure, can positively impact the microbial 

community as compared to conventional agricultural production (Birkhofer et al., 2008; 

Ghimire et al., 2014; Ullrich et al., 2011).  These increases are associated with the use of 

organic amendments including green and animal manures (Lejon et al., 2007), as opposed 

to synthetic fertilizers which reduce microbial biomass and substrate use efficiency 

(Birkhofer et al., 2008).  Cover-cropping, a practice commonly employed in organic 

agriculture, benefits total microbial biomass by enhancing fungal abundance (Buyer et 

al., 2010; Wortman et al., 2013).   

By supporting the microbial communities driving the processes of soil 

aggregation (and therefore SOC storage), organic farming methods tend to provide 

enhanced SOC content or improved soil structure over conventional methods (Foereid 

and Høgh-Jensen, 2004; Gerhardt, 1997; Williams and Petticrew, 2009).  Despite 

evidence to support the positive impacts of organic management on soil microbial 

communities, this does not always translate into improved soil aggregation and increased 

carbon storage in these systems, particularly when background levels of SOC are high 

(Peichl et al., 2010).  A study by Sanford et al. (2012) found that an organic grain rotation 

at the Wisconsin Integrated Cropping Systems Trial (WICST) in Arlington, WI lost 5 Mg 

SOC ha-1 to a depth of 91 cm over a 20-year period, among the highest of any cropping 

system in the trial, with the exception of a conventionally-tilled and managed continuous 

corn system.  In a related study, Cates et al. (2016) found that this same organic grain 
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rotation at WICST had lower levels of aggregation compared with other cropping 

systems in the trial. The results of these WICST studies emphasize the fact that SOC 

dynamics and soil aggregate stability are still not well-understood, particularly in organic 

cropping systems.  As the main drivers of soil aggregation (and therefore SOC storage), 

additional study is required to determine the impacts the microbial community and its 

functional groups have on these processes under organic management (Balser et al., 

2006; Lichtfouse et al., 2010).  

 To address this gap in knowledge, we investigated the relationship between soil 

microbial community and soil aggregate structures within the organic cash-grain rotation 

at WICST.  Previous work (Chapter I) showed that soil aggregation differed significantly 

with crop phase in this rotation, with the heavily-tilled corn phase having a higher 

proportion of macroaggregates (and associated occluded soil aggregate fractions) and 

lower proportions of smaller free soil aggregate fractions than either the soybean (which 

is also heavily-tilled) or wheat phases.  To determine whether microbial community 

composition is associated with the observed variation in soil aggregation within the 

WICST organic grain rotation, we compared the soil microbial communities among crop 

phases within three soil aggregate size classes separated from the whole soil: 

macroaggregates (>250 µm), microaggregates (53-250 µm), and silt and clay (<53 µm).  

We used a modified Bligh and Dyer (1959) lipid extraction to isolate organic material 

which was saponified and converted to fatty acid methyl esters (FAMEs) as the FAME 

procedure introduced by Microbial ID, Inc. (Newark, DE).  FAMEs were used for gas 

chromatography (GC) profiling.  GC profiles given by the FAMEs allowed 

characterization of community composition based on abundances of microbial ecological 



62 

 

groups (e.g. broad groupings of fungi and bacteria). We hypothesized that 1) overall 

microbial community composition will differ with crop phase; 2) crop phases 

incorporating fewer tillage operations would have higher abundance of fungi and fungal 

to bacterial ratios (F:B), while crop phases with a greater number of tillage operations 

would favor higher abundances of bacteria; and 3) abundance of fungal groups will be 

associated with differences in soil aggregation across crop phases. 

 

Materials and Methods 

 

Site Description 

 

The study was conducted at the Wisconsin Integrated Cropping Systems Trial 

(WICST), located at the University of Wisconsin Arlington Agricultural Research Station 

in Columbia County, WI (43 1̊8’18”N, 89 1̊9’48”W).  The soil at WICST is classified as 

a Plano silt-loam, a Fine-silty, Mixed, Superactive, Mesic Typic Argiudolls (USDA 

NRCS Soil Taxonomy) formed over a parent material of alluvial loess deposits.  Average 

annual temperature at the Arlington Agricultural Research Station is 6.9 C̊, with an 

average minimum of 0.5 C̊ and an average maximum of 13.3 C̊. Annual precipitation 

averages 869 mm, with the majority (64%) occurring in the spring and summer (1981-

2010, National Climatic Data Center).  WICST, established in 1990, is a long-term 

cropping systems trial designed to assess the productivity, profitability, and 

environmental impacts of two different agricultural enterprise types under varying crop 

diversity levels (Posner et al., 1995).  These two enterprise types represent cash-grain as 

well as dairy forage production strategies commonly found in Wisconsin and the upper 

Midwest.  Prior to cultivation (ca 1850), deep-rooted tallgrass prairie vegetation was 
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dominant in the region.  In the mid-1800s, the predominant agricultural use was 

continuous wheat production which later shifted to livestock feed as the dairy industry of 

Wisconsin grew.  From the 1960s until its establishment, the WICST site had been 

cultivated with an alfalfa (Medicago sativa L.)-corn (Zea mays L.) rotation, using dairy 

manure as a nutrient source (Posner et al., 1995).  In 1989, the trial was planted to corn to 

achieve soil homogenization and improve blocking accuracy based on yield variability. 

WICST is a randomized complete block design consisting of four replications of 

each of six cropping systems.  All phases of each cropping system are present in a year.  

Of the four total replicates present at WICST, three were sampled in this study as one 

replicate (block two of four) has consistently demonstrated soil properties inconsistent 

with those of the other three replicates and is susceptible to frequent flooding, potentially 

adding additional compounding factors to soil properties.  Therefore, block two is not a 

good representation of the site as a whole (G.R. Sanford, personal communication, 2016).  

The six cropping systems at WICST represent cash-grain and dairy forage enterprises, 

with conventional and organic representatives of each.  Plots are 0.3 ha in size.  Our 

study was carried out in just one of these six cropping systems, an organically-managed 

cash-grain rotation.  This rotation is three years in length, with a crop sequence of corn, 

soybean [Glycine max (L.) Merr], and winter wheat (Triticum aestivum L.).  The winter 

wheat phase includes a mixed oat (Avena sativa L.) and berseem clover (Trifolium 

alexandrium L.) cover crop planted after wheat is harvested. This gave us three replicates 

with three crop phases per replicate, or nine experimental plots total.   

Annually, the organic cash grain cropping system receives an application of 

composted pelletized poultry manure in spring of both the corn and wheat phases.  The 
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corn phase receives poultry manure at a rate of 4.48 Mg ha-1 while the wheat phase 

receives 2.24 Mg ha-1. A combination of tillage and cultivation methods are used for field 

preparation, weed control, and post-harvest field management.  Specific tillage and 

cultivation activities, and the timing of activities, can be found in Figure 1.1 (Chapter I).  

All crop phases are field cultivated prior to planting.  Corn and soybean phases receive 

several rotary hoe or tine-weeding events for weed control, as well as several in row 

cultivations.  Plots are chisel plowed in fall after corn and soybean harvest, and in 

summer after wheat harvest prior to cover crop planting.  Cover crops are terminated 

during the field cultivation event preceding corn planting in spring.  At minimum, corn 

and soybean phases receive six tillage and/or cultivation events during the year, and the 

wheat phase receives two to three.  

Soil Sampling 

 Baseline soils were sampled after harvest of wheat, soybean and corn in 2014 

(July, September, and November respectively).  In 2015, soil samples from each 

treatment were collected in late October at the end of the growing season, following 

tillage and planting of the rye cover crop in the corn phase, planting of wheat in the 

soybean phase, and standing cover crop senescence in the wheat phase.  At each sampling 

event, five soil cores 15 cm deep and 1.9 cm in diameter were composited per sub plot, 

and placed immediately in a cooler until they could be stored at 4 C̊. Within two weeks 

of sampling, each sample was picked free of visible plant residues and rocks prior to 

further processing which included sieving to 2 mm.  After sieving, samples were placed 

in a freezer at -20 C̊ for storage before they were processed further.  Samples were stored 
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cold and/or frozen to retain field moisture as well as viability of microbial residues to be 

used in community analysis. 

Aggregate Fractionation 

Samples were removed from the freezer and placed in a refrigerator at 4 C̊ to 

thaw for a minimum of 24 hr before aggregate fractionation.  A small amount (15-20 g) 

of each sample was removed and dried in a 60 C̊ oven until the soil weight stabilized to 

determine volumetric moisture content.  The aggregate fractionation method we used is a 

simplified version of that employed by Six et al. in 1998 (Chapter I Figure 1.3, step A), 

and similar to the method in Cates et al. (2016).  A 250 µm mesh sieve was set within a 

large metal basin.  Deionized water (DI) was added to the basin until the water level was 

approximately 2 cm above the sieve’s mesh.   An 80 g portion of each soil sample was 

carefully sprinkled onto the 250 µm mesh sieve.  The soil was allowed to soak for 5 min, 

then the sieve was moved up and down in the water-filled basin approximately 3 cm at a 

slight angle at a rate of 25 times per min for 2 min.  Material that washed through the 

sieve was collected in the large metal basin, and any particles stuck to the outside of the 

sieve were carefully washed into the basin with a squeeze bottle containing DI.  

Macroaggregate (M) soil particles (>250 µm) remaining in the sieve were washed into a 

pre-weighed aluminum pan.  Approximately 10g of the M/DI slurry in the aluminum pan 

was collected into a specimen cup and then frozen at -20 C̊.   

The soil and DI slurry that was retained in the first basin was then poured into a 

53 µm mesh sieve nested within a second large metal basin.  If the water level was not 

sufficient, DI was added until the water level was 2 cm above the sieve’s mesh.  The 53 
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µm sieve was then moved up and down approximately 3 cm at a slight angle 25 times per 

min for 2 min. Again, material that had washed through the 53 µm mesh was collected in 

the second metal basin and fine soil particles stuck to the outside of the sieve were 

carefully washed into the basin with a squeeze bottle containing DI.  Microaggregate (m) 

soil particles (53-250 µm) remaining in the sieve were rinsed into a pre-weighed 

aluminum pan.  Approximately 10g of m/DI slurry from the pan was collected in a 

specimen cup and frozen at -20 C̊.  A slurry of silt and clay (s+c) particles (<53 µm) and 

DI remained in the second basin. About 10g of the slurry was added to a specimen cup 

and frozen at -20 C̊ while remaining s+c/DI slurry was rinsed into a pre-weighed 

aluminum pan. Samples that had been frozen in specimen cups following aggregate 

fractionation were lyophilized for approximately 24 h to remove moisture prior to the 

lipid extraction process. 

Determination of Microbial Community Composition of Aggregate Fractions 

 

 Lipids were extracted from approximately 3g of lyophilized soil samples as per 

the protocol described in White and Ringelberg (1998) using the initial extraction steps of 

the  modified method from Bligh and Dyer (1959). The resulting fatty acids were then 

saponified and converted to fatty acid methyl esters (FAMEs) and analyzed according to 

the methods of Microbial ID Inc. (Newark, DE).  Lipids were obtained from the soil 

samples using a chloroform-methanol extraction with a phosphate buffer.  Samples were 

shaken for approximately 1 h and centrifuged to separate phases.  The supernatant was 

removed with a pipette, and the samples were placed in a dark environment at room 

temperature to separate overnight.  The following day, the top layer was removed with a 
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vacuum aspirator and the tubes containing the remaining CHCl3 layer were placed in a 

Rapid-Vap at 33 C̊ for drying.  Fatty acids were saponified with the FAME method from 

Microbial ID Inc., adding sodium hydroxide and heating in a water bath for 30 minutes.  

Methanolysis was then performed by adding a strong acid.  

 2 µl of extracted FAMEs per sample were analyzed with a Hewlett-Packard 6890 

gas chromatograph, equipped with a flame ionization detector and an Ultra 2 capillary 

column (Agilent Technologies, Santa Clara, CA).  Gas chromatography conditions were 

controlled by the MIDI Sherlock program and lipid peaks were identified using bacterial 

fatty acid standards and the Sherlock peak identification software (MIDI Inc., Newark, 

DE).  Peak areas of two internal standards, 9:0 (nonanoic methyl ester) and 19:0 

(nonadecanoic methyl ester), were used to measure quantities of fatty acids.  Fatty acids 

were converted to µmol lipid g soil-1.  Total microbial biomass was estimated from total 

µmol lipid g soil-1, and absolute abundances of microbial ecological groups (including 

gram-positive bacteria [Gm+], gram-negative bacteria [Gm-], arbuscular mycorrhizal 

fungi [AMF], saprotrophic fungi [SF], and actinomycetes) were calculated from average 

µmol lipid g soil-1 of all lipids in a sample corresponding to those groups (see Table 2.1).  

Relative ecological group abundances (mol%) were calculated by taking the average 

µmol lipid g soil-1 corresponding to that group/total µmol lipid g soil-1 for a sample.  

Fungal to bacterial ratios (F:B) were calculated using total µmol fungal lipid g soil-1 /total 

µmol bacterial lipid g soil-1.  Fatty acids that were present in quantities 0.5 mol% or 

greater in both 2014 and 2015 samples were included in our group analysis.   
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Statistical Analysis 

 

Total microbial biomass, F:B, and ecological group relative abundance analysis 

 

Microbial biomass, F:B, and ecological group data were analyzed separately by 

soil aggregate fraction (M, m, and s+c) using an RCBD in PROC GLIMMIX in SAS 

version 9.4 (SAS Institute Inc., Cary, NC). As sampling occurred across two production 

seasons, the potential effects of year and crop phase were tested using crop, year, and the 

crop × year interaction as fixed effects.  Split-plot treatments (as described in Chapter I) 

were included in the model as a covariate to provide improved fit and random distribution 

of the residuals.  Block and the block × crop interaction were treated as random effects.  

Our response variables of interest included total microbial biomass (henceforth referred 

to as total biomass), F:B, and the relative abundance (mol %) of five microbial ecological 

groups: gram-positive bacteria (Gm+), gram-negative bacteria (Gm-), arbuscular 

mycorrhizal fungi (AMF), saprotrophic fungi (SF), and actinomycetes. 

Where year and the year × crop phase interaction was significant, the SLICE and 

SLICEDIFF statements were included in the LSMEANS line of code to separate out 

effects of crop phase for each individual level of year (2014 and 2015).. After first 

running the GLIMMIX models, residual plots for certain response variables indicated a 

few violations of equal variance.  Several alternative distributions were tried with the 

GLIMMIX models, and it was determined that for models analyzing total biomass, F:B, 

and mol % of Gm+, Gm-, and actinomycetes as response variables, a normal (Gaussian) 

distribution was the best fit.  The best-fitting models for analysis of mol % of AMF and 

SF were GLIMMIX models run within the log-normal distribution, thus interpretation of 

the AMF and SF data will be in terms relative to other crop phases within this experiment 
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only.  Outliers in all models with residuals well outside of two standard deviations from 

the mean were removed from analysis.   Specific data points removed can be found in 

Appendix II.  A Tukey adjustment was performed to more accurately separate means and 

limit type I error at the α = 0.05 level. 

Microbial community analysis 

 

 Multivariate analysis of principal components (PCA) was performed on negative 

arcsine-transformed mol % of the lipid biomarkers listed in Table 2.1 in order to 

determine microbial community structure within each aggregate fraction and year in JMP 

Pro version 12.2.0 (SAS Institute Inc., Cary, NC).  Variability contributed by effect of 

subsamples (split-plot treatments used as covariates) within crop phase within block 

within year (year/block/crop/subsample) was tested for first two principal components 

(PC1 and PC2) using linear mixed-effect (LME) models in RStudio version 3.2.2 (R Core 

Team, R Foundation for Statistical Computing, Vienna, Austria).  Variability contributed 

to the principal components by each variable was standardized and calculated as 

described in Oates et al. (2012).  Effect of crop phase on PC1 and PC2 was determined 

separately by aggregate fraction using PROC GLIMMIX in SAS version 9.4. In these 

models, a Tukey adjustment was performed to more accurately separate means and limit 

type I error at the α = 0.05 level. These data were analyzed using the lognormal 

distribution to provide an improved model fit. 

Results 

Crop Phase Effects on Total Biomass and F:B 

 

 Crop phase significantly affected total lipid biomass associated with the largest 

soil particles, M (p = 0.013), but did not significantly affect biomass associated with the 
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m or s+c soil fractions (p = 0.43 and p = 0.80, respectively; Table 2.2).  A significant year 

× crop phase interaction (p < 0.0001) also existed in the M fraction, but did not for m or 

s+c (p = 0.27 in both cases).  Thus, the effect of crop phase on total biomass in M was 

analyzed over each year separately.  This analysis revealed that the effect of crop phase 

on total lipid biomass was significant only in 2015 (p < 0.0001).  Total lipid biomass in 

the wheat phase averaged over 50% higher than corn or soybean (0.348, 0.230, and 0.223 

µmol g soil-1, respectively, p <0.0001) and the corn and soybean phases were not 

different from one another.  In 2014, the effect of crop phase on total biomass associated 

with M was not significant at the 0.05 level (p = 0.053).  Lipid biomass totaled 0.195, 

0.226, and 0.187 µmol g soil-1 for corn, soybean, and wheat respectively.   Total lipid 

biomass associated with M in all three phases was generally larger in 2015 than 2014 

overall, most markedly in the wheat phase between the two years by nearly 50% (p < 

0.0001).  

Though the year × crop phase interaction was not significant, a significant year 

effect (p < 0.0001) in the m fraction was observed, thus this fraction was also analyzed 

separately over the two levels of year.  Average total biomass associated with m in 2014 

was 0.175, 0.205, and 0.198 µmol g soil-1 for the corn, soybean, and wheat phases 

respectively.  The 2015 lipid biomass totaled 0.227, 0.247, and 0.276 µmol g soil-1 for 

corn, soybean, and wheat respectively.  Though 2015 m-associated lipid biomass was 

observed to be larger than 2014 (p < 0.0001), this was not explained by crop phase 

differences.   

The full statistical model showed that crop phase had a significant effect on F:B 

associated with M and m soil fractions (p = 0.0005 and p = 0.013, and was not significant 
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at the 0.05 level (p = 0.056) in the s+c fraction.  All three soil fractions had significant 

year × crop phase interactions (p < 0.0001 in all cases); as such, each fraction was 

analyzed separately by year.  In 2015, F:B in the M fraction of wheat and corn averaged 

> 1, indicating total fungal lipid biomarkers were greater than the total of bacterial lipid 

biomarkers.  Bacterial biomarkers dominated M fractions in the soybean phase in 2015, 

and all three crop phases in 2014.  The two smaller soil fractions (m and s+c) always had 

a F:B < 1 indicating bacterial dominance.   

As with the total biomass, no significant effect of crop phase at the 0.05 level was 

observed on F:B in 2014 for either the M or m soil fractions (p = 0.22 and 0.10 

respectively).  However, differences were observed within these fractions in the 2015 soil 

samples (p = 0.002 in M; p = 0.02 in m).  In 2015, M F:B of the wheat phase was 

approximately 1.5 times that of corn or soybean (p < 0.0001), and m F:B was over 25% 

greater in wheat versus corn or soybean (p < 0.0001).  The s+c soil fraction showed 

significant crop effects in both 2014 and 2015 (p = 0.02 and p = 0.04 respectively).  In 

2014, s+c F:B was greatest in corn (0.296), while soybean and wheat F:B was 0.247 and 

0.258 respectively (LSD = 0.033). In 2015, the s+c F:B was greatest in wheat (0.542), 

with corn and soybean at 0.433 and 0.429 respectively (LSD = 0.085).  Along with the 

total biomass, F:B increased in all soil fractions between 2014 and 2015 (p < 0.0001).  

Potential influences on these factors, such as increases in specific microbial ecological 

groups, are investigated further through analysis of ecological group relative abundance. 

Crop Phase Effects on Relative Abundance of Microbial Ecological Groups 

 

 For each ecological group (Gm+, Gm-, AMF, SF, and Actinomycetes) and soil 

aggregate fraction (M, m, s+c), the interaction of year × crop phase on relative abundance 
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(mol %) was significant (p < 0.05; Figures 2.1 and 2.2 a-e), with the exception of Gm- 

biomarkers associated with m (p = 0.32) and SF biomarkers associated with s+c (p = 

0.24).  In order to determine differences resulting from this interaction, all groups were 

analyzed separately by year as well as soil aggregate fraction.   

Crop phase effects differed in 2014 versus 2015.  In 2014, the effect of crop phase 

on relative abundance of groups in M was significant for all groups except for Gm+ and 

actinomycetes (p = 0.95 and 0.73 respectively).  The Gm- group was approximately 10% 

more abundant in M of the corn phase versus soybean and wheat (p = 0.0001 and 0.004 

respectively).  AMF relative abundance of both the corn and wheat phases was over 1.5 

times greater than the soybean phase (p < 0.0001 and = 0.008 respectively).  The other 

fungal ecological group we investigated, SF, had greater relative abundance by 

approximately 1.5 times in soybean versus corn and wheat (p = 0.0007 and 0.002 

respectively).   In 2015, relative abundance of all groups associated with M fractions 

showed significant effects of crop phase except Gm- (p = 0.23).  For Gm+, wheat had 

about 25% lower relative abundance than the corn or soybean phases (p = 0.0003 and < 

0.0001 respectively).  AMF relative abundance in wheat was more than twice that in corn 

or soybean (p < 0.0001), while actinomycete relative abundance was approximately 30% 

higher in corn and soybean than wheat (p < 0.0001).  The effect of crop phase on M SF 

mol % was also significant in 2015, responding similarly but to a lesser degree than 2014. 

Relative abundance of SF in corn and soybean phases was greater by about 30% than the 

wheat phase (p = 0.0006 and 0.002 respectively). 

Relative abundance of ecological groups in m was slightly less affected by crop 

phase than those in the M fraction, and effects were reduced in 2014 versus 2015.  In 
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2014, only the Gm+ and actinomycete groups were significantly affected by crop phase.  

The proportion of Gm+ lipids (calculated as mol %) was approximately 10% lower in the 

corn phase than soybean or wheat (p < 0.0001 and = 0.0005 respectively). The proportion 

of actinomycete lipids was also significantly lower by about 10% in corn versus soybean 

or wheat (p = 0.0001 and 0.002 respectively).  In 2015, the relative abundances of Gm+, 

actinomycetes, AMF, and SF in m were all significantly affected by crop phase.  The 

proportion (mol %) of Gm- lipids were not different with respect to crop phase (p = 0.44).  

Proportions of Gm+ lipids were slightly reduced in wheat compared with corn and 

soybean (p = 0.0006 and 0.006 respectively), while AMF relative abundance showed the 

strongest crop effect with the relative proportion of AMF in wheat nearly twice that of 

corn or soybean (p < 0.0001).  In the actinomycete group, corn had approximately 10% 

greater relative abundance than wheat (p = 0.007), while soybean did not differ from 

either of the other two crop phases.  Similarly for SF, corn had a higher relative 

abundance than wheat by over 10% (p = 0.014) while soybean did not differ from the 

other two crop phases. 

In the smallest soil fraction, s+c, crop phase affected the relative abundance of all 

ecological groups with the exception of SF (p = 0.22).  Relative abundance of Gm+, Gm-, 

and actinomycetes was increased in the soybean and wheat phases over the corn phase.  

Gm+ relative abundance was higher in soybean and wheat versus corn by nearly 1.5 

times (p = 0.0001 and 0.002 respectively).  Similarly, Gm- and actinomycete relative 

abundance was increased in soybean and wheat phases compared with the corn phase by 

approximately 30% (p = 0.0002 and 0.044 respectively for Gm-; p = 0.0002 and 0.025 

respectively for actinomycetes).  For AMF, wheat had a higher relative abundance than 
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corn by approximately 1.5 times (p = 0.007) while soybean did not differ from the other 

crop phases. In 2015, AMF was the only group in the s+c fraction affected by crop phase 

with over twice the relative abundance in the wheat phase versus corn or soybean (p < 

0.0001).  

 Several trends emerged with respect to relative abundance of microbial ecological 

groups. Between 2014 and 2015, the proportion of AMF lipids increased in all soil 

fractions (p ≤ 0.0004), though this increase was primarily observed in the wheat phase.  

This distinct difference in relative abundance between the two sampling years was not 

consistent among the three soil fractions for any other group.   

Crop Phase Effects on Microbial Community Composition 

 

Six separate principal component analyses (PCAs) were run to assess microbial  

community composition, one for each of the three soil fractions and each year 

investigated, due to the significant year × crop phase interactions observed in ecological 

group relative abundances (Figures 2.3 and 2.4 a-c).  This section will describe each of 

these analyses by soil fraction separately. 

Microbial community composition of the M fraction 

 

 In the M soil fraction, variability in microbial community composition was 

explained most by year (21%) and crop phase (34%).  In 2014, principal component 1 

(PC1) accounted for 50.4% of variability in microbial composition.  Lipid biomarkers 

correlated most positively with PC1 included five Gm+ lipids: i15:0, a15:0, i16:0, i17:0, 

and a17:0, one Gm- lipid, cy19:0, as well as the actinomycete biomarkers 10Me16:0 and 

10Me18:0.  Biomarkers that were negatively correlated with PC1 included the AMF 



75 

 

biomarker cis16:1ω5 as well as two SF biomarkers cis18:2ω6,9 and cis18:1ω9.  Effect of 

crop phase was not significant for PC1 (p = 0.83). 

In 2015, principal component 1 (PC1) accounted for 71.1% of variability in 

microbial composition.  Lipid biomarkers correlated most positively with PC1 in this 

year included all six Gm+ lipids: i14:0, i15:0, a15:0, i16:0, i17:0, and a17:0, one Gm- 

lipid, cy19:0, as well as the actinomycete biomarkers 10Me17:0 and 10Me18:0.  

Biomarkers that were negatively correlated with PC1 included the AMF biomarker 

cis16:1ω5, one Gm- biomarker, cis18:1ω7, and one SF biomarker, cis18:2ω6,9.  Effect of 

crop phase was significant at the 0.05 level for PC1, though marginally so (p = 0.049).  

Soybean and wheat were the only two crop phases that differed significantly (p = 0.049), 

with PC1 values for soybean being more negative and more positive for wheat.  This 

indicates that lipid biomarkers (and associated ecological groups) with negative values 

(AMF, the cis18:1ω7 Gm- biomarker, and one SF biomarker) drove variability in 

community composition in the soybean phase.  Lipid biomarkers with positive values 

(the six Gm+ lipids, the cy19:0 Gm- biomarker, and two actinomycete biomarkers) drove 

community composition variability in wheat. 

 Variability in principal component 2 (PC2) was explained by year (16%) and 

spatial variation (subsample 37%) along with crop phase (24%).  In 2014, PC2 accounted 

for an additional 16.4% of total microbial community variability.  Biomarkers that were 

most positively correlated with PC2 included the two SF lipids (cis18:1ω9 and 

cis18:2ω6,9).  Strong negative correlations were seen with PC2 and the lipid biomarker 

associated with AMF, cis16:1ω5, as well as one Gm- lipid, cis18:1ω7.  The effect of crop 

phase was significant for PC2 (p = 0.021), though only corn and soybean phases were 
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significantly different from one another (p = 0.019).  Soybean was associated with 

negative values of PC2, which correlated with the AMF biomarker and one Gm- 

biomarker, the lipid cis18:1ω7.  Corn was associated with positive PC2 values.  These 

values were correlated with the two SF biomarkers. 

 PC2 in 2015 accounted for an additional 13.4% of community variability.  

Biomarkers that were most positively correlated with PC2 included the two SF lipids 

(cis18:1ω9 and cis18:2ω6,9) and one actinomycete biomarker, 10Me16:0.  Negative 

correlations were seen with PC2 and the AMF biomarker as well as several Gm- lipid 

biomarkers, cis18:1ω7, cy19:0, and cis16:1ω7.  Effect of crop phase was stronger on PC2 

in 2015 (p = 0.002), with the wheat phase separating from both corn and soybean 

significantly (p = 0.004 and 0.003 respectively).  Corn and soybean were associated with 

negative values of PC2, and therefore the AMF and Gm- groups tended to drive 

variability for PC2 in these phases.  The wheat phase was associated with positive values 

of PC2; SF drove this phase’s variability for PC2. 

Microbial community composition of the m fraction 

 

PC1 of the m PCA was explained by year (11%) and spatial variation (block 5%; 

subsample 48%), as well as crop phase (21%).  In 2014, PC1 accounted for 52.6% of 

microbial community variability, with the highest positive correlations between PC1 and 

lipid biomarkers observed in several Gm+ lipids (i15:0, a15:0, i16:0, and a17:0) as well 

as a single Gm- lipid (cy19:0) and one actinomycete lipid (10Me16:0).  While no 

biomarkers were negatively correlated with PC1, the smallest positive correlation was 

between PC1 and the AMF biomarker cis16:1ω5.  Statistical models showed that the crop 

phase effect was significant at the 0.05 level for PC1 (p = 0.047), with only corn and 
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soybean phases separating significantly (p = 0.048).  The highest positive values of PC1 

were associated with the corn phase, indicating that four of the Gm+ biomarkers as well 

as one Gm- (cy19:0) and one actinomycete lipid (10Me16:0) drove variability in this 

phase.  Negative values were associated with the soybean phase, and these correlated 

somewhat (though not closely, as no biomarkers were negatively correlated with PC1) 

with the AMF biomarker. 

In 2015, PC1 accounted for 40.9% of microbial community variability.  Five 

Gm+ lipid biomarkers (i15:0, a15:0, i16:0, i17:0, and a17:0) were most positively 

correlated with PC1. Negative values of PC1 were most strongly correlated with the 

AMF biomarker cis16:1ω5 and more weakly with one Gm- biomarker, cis18:1ω7.  

Statistical models indicated that the three crop phases did not separate significantly at the 

0.05 level along PC1 (p = 0.062). 

PC2 variation was explained by year (41%), spatial variation (subsample 25%), 

and crop phase (31%).  In 2014, PC2 accounted for 14.4% of community variation.  

Positive correlations between PC2 and lipid biomarkers occurred with AMF and SF lipids 

and one Gm+ lipid, i14:0.  Negative correlations were observed most strongly with three 

of the six Gm+ biomarkers (a15:0, i17:0, and a17:0) and one Gm- biomarker, cy19:0.  

Crop phase did not significantly affect community composition along PC2 of 

microaggregates in 2014 (p = 0.66).  Several sources list the biomarker i14:0 as Gm+ 

specific, so its association apart from the others in this case is interesting (Mentzer et al., 

2006; Rinnan et al., 2008; Zelles et al., 1992). 

An additional 14.0% of community variability was explained by PC2 in 2015.  

The two SF lipid biomarkers were most strongly correlated with positive PC2 values, 
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while two Gm- biomarkers (cy 19:0 and cy 17:0) as well as three Gm+ biomarkers 

(a15:0, i16:0, and i17:0) were correlated with negative PC2 values.  Again, crop phase 

did not have a significant effect on PC2 in 2015 (p = 0.13).       

Microbial community composition of the s+c fraction 

 

For the s+c soil fraction, variation in PC1 was explained by year (39%) and 

spatial variability (subsample 35%) along with crop phase (23%).  In 2014, PC1 

accounted for 51.8% of microbial community variability.  Lipid biomarkers with the 

highest positive correlation with PC1 included both Gm+ and Gm- biomarkers i15:0, 

cy19:0, cis18:1ω7, i17:0, cis16:1ω7, a15:0, and a17:0.  No biomarkers were negatively 

correlated with PC1, but the SF biomarker cis18:2ω6,9 had the lowest positive 

correlation. The effect of crop phase was not significant on microbial community 

composition for PC1 (p = 0.27). 

In 2015, PC1 in the s+c fraction accounted for 58.2% of microbial community 

variability.  The actinomycete biomarker 10Me16:0, five Gm+ biomarkers (i15:0, a15:0, 

i16:0, i17:0, and a17:0), and one Gm- biomarker (cis16:1ω7) were correlated with 

positive values of PC1.  No biomarkers were negatively correlated with PC1, but the 

actinomycete biomarker 10Me17:0 had the lowest positive correlation.  The effect of 

crop phase was not significant on microbial community composition for PC1 (p = 0.24). 

PC2 of the s+c fraction was explained by year (29%), spatial variation (subsample 

39%), and crop phase (29%). In 2014 PC2 accounted for 11.9% of microbial community 

variation. The lipid biomarkers most positively correlated with PC2 were one Gm+ lipid 

(i14:0), one actinomycete lipid (10Me17:0), one SF lipid (cis18:2ω6,9).  Negative 

correlations between PC2 and lipid biomarkers occurred most strongly with four 
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remaining Gm+ biomarkers (a15:0, i16:0, i17:0, and a17:0) and one Gm- biomarker 

(cy19:0).  Crop phase effect was not significant for community composition along PC2 in 

2014 (p = 0.17).   

An additional 11.3% of community variability was accounted for by PC2 in 2015.  

Positive values of PC2 were associated most strongly with the AMF biomarker and one 

actinomycete biomarker (10Me17:0).  Three Gm+ biomarkers (a15:0, i17:0, and a17:0), 

along with one Gm- biomarker (cy19:0) and one actinomycete biomarker (10Me16:0) 

were correlated most strongly with negative values of PC2.  Statistical models indicated 

crop phase had a significant effect at the 0.05 level on PC2 in 2015 (p = 0.045), though 

once adjusted with the Tukey means separation procedure, no crop phases were 

significantly different at α = 0.05. 

 

Discussion 

 

Previous research has shown that crop rotation can positively impact microbial 

biomass, including the overall diversity and types of crops included in the rotation 

(Ngosong et al., 2010; Roberts et al., 2011).  Our results indicated that the M soil fraction 

was the only aggregate class within which total lipid biomass was affected by crop phase.  

Similarly, Zhang et al. (2014) found that effect of management on microbial biomass 

depends on aggregate size, and that effects were only seen in aggregates >250 µm. Of the 

three crop phases, wheat had the most lipid biomass as compared to corn and soybean, 

largely due to increases in fungal abundance and therefore higher F:B within the wheat 

crop phases. These effects were only observed in 2015 when sampling time was the same 

for the three crop phases, however, when differences in ground cover existed among the 
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three crop phases. Crop effects on abundance of specific microbial groups have been 

noted previously (Larkin and Honeycutt, 2006; Wortman et al., 2013).  In our study, 

AMF was the microbial ecological group with abundance most significantly affected by 

crop phase.  Increases in AMF relative abundance in wheat versus corn and soybean in 

2015 provides some explanation for the increase in total biomass and F:B described 

earlier.  Indeed, higher F:B values in M and m fractions of wheat indicate the microbial 

community composition in this phase is shifted towards a greater abundance of fungi 

compared with corn and soybean.  Higher AMF relative abundance and F:B in the wheat 

phase in 2015, which is less-intensely tilled and had been disturbed less recently than the 

corn and soybean phases, supports our first hypothesis that crop phases with reduced 

tillage pressure would have increased abundance of fungi.   

The observed differences in total biomass, F:B, and microbial ecological group 

relative abundance may also be affected by soil sampling time in addition to crop phase 

management.  Baseline (2014) soil samples were collected post-harvest in July for wheat, 

September for soybean, and November for corn.  At this time, all crop phases had been 

recently tilled and had no plants actively growing.  2015 samples were all taken in 

October, after corn and soybean harvest/tillage, and with a standing cover crop 

(oat/berseem clover) in the wheat phase.  This plant material likely played a role in the 

increased AMF abundance observed in the wheat phase compared with corn and soybean 

in 2015.  With roots for AMF to colonize, this group could proliferate to a greater degree 

as opposed to times during the production season when no roots were present as in the 

corn and soybean phases.  The result is increased AMF abundance and total lipid biomass 

in wheat compared with corn and soybean, which we observed in 2015 when cover crops 
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were being grown but not 2014 without cover crops.  Cover cropping can increase fungal 

abundance (Buyer et al., 2010; Lienhard et al., 2013; Wortman et al., 2013), supporting 

our results.  As crop rotational phase shifts in plots from year to year, sampling within 

different physical locations for each crop phase in each year may have also contributed to 

the observed differences between the two years.   

Lesser crop effects on microbial ecological group abundance were observed for 

SF, Gm+, actinomycetes, and finally Gm- (with almost no notable crop effect) as 

compared with AMF, particularly as soil fraction size decreased (Figures 2.2 and 2.3).  

Slightly increased relative abundance of Gm+, SF, and actinomycetes was seen in corn 

and soybean compared with wheat in 2015, though crop phase effects were less 

consistent in 2014.  This finding is supported by Buyer et al. (2010), who found that Gm+ 

abundance was higher in non-cover cropped treatments.  Denef et al. (2009) showed that 

Gm+ and actinomycete groups are less involved in processing rhizodeposited carbon.  It 

is possible that a lack of readily available rhizodeposited carbon in the corn phase due to 

lack of cover crops favored groups that obtain carbon from other sources, such as more 

recalcitrant materials (Linn and Doran, 1984).     The corn and soybean phases were each 

sampled close to harvest in both seasons and therefore close to plant maturity and 

senescence, where bacterial abundances have been observed to be highest (Ngosong et 

al., 2010).  A senescing plant community may have decreased labile carbon sources 

available to microbes; increased recalcitrance of carbon sources has been linked to 

increased Gm+ and actinomycete abundance (Linn and Doran, 1984).  Decreased SF 

abundance in wheat compared with corn and soybean in 2015 is not as intuitive, however, 

as high intensity of tillage in corn and soybean phases would be thought to disrupt fungal 
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hyphal networks as described in Lienhard et al. (2013).  Buyer et al. (2010) found 

increased proportions of fungi (AMF and otherwise) in cover cropped treatments; we did 

not see this trend with SF in our cover-cropped wheat.  Conversely, Mbuthia et al. (2015) 

noted increased SF abundance in tilled soils compared with no-till, supporting our results 

as corn and soybean receive much heavier tillage than wheat.  This increase was 

attributed to certain groups of fungi being known to adapt well to environmental stresses. 

 Soil fungi, including AMF, are known to be important in the formation of M, 

encouraging formation of m thereby stabilizing soil carbon (Bossuyt et al., 2001; Rillig 

and Mummey, 2006).  In Chapter I, we found differences among crop phases in soil 

aggregate distribution, with the corn phase in 2014 and both corn and soybean in 2015 

having a higher proportion of M than wheat in either year.  Higher aggregation in the 

corn and soybean phases would suggest that factors known to induce M formation (such 

as increased abundance of fungi) would be enhanced in this phase as has been observed 

elsewhere (Bossuyt et al., 2001).  However, the data presented here do not always support 

this.  We found that the wheat phase had the highest relative abundance of AMF (along 

with corn in 2014 and alone in 2015) and highest F:B in most soil fractions, while 

soybean had the highest relative abundance of SF in M in 2014 alone.  For AMF, 

differences in relative abundance arose from 2015 samples, in which wheat was sampled 

during a standing cover crop while corn and soybean had minimal to no plant growth.  

This lead to increased AMF abundance in the wheat phase in 2015 in part because AMF 

were able to form mycorrhizal associations with plant roots later in the season compared 

with corn and soybean. Despite high AMF abundance, the wheat phase did not exhibit 

increased aggregation in either year. SF have also been suggested as important for soil 
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aggregation processes (Lehmann and Rillig, 2015).  Higher relative abundance in corn 

and soybean in 2015 where aggregation was highest may support this, but is inconsistent 

with 2014 where reduced aggregation was observed in soybean compared with corn when 

soybean had increased SF abundance. 

High AMF relative abundance and F:B in wheat in 2015, and higher SF relative 

abundance in soybean, where we saw lower soil aggregation compared with corn in 2014, 

did not support our hypothesis that fungal abundance could be associated with observed 

differences in aggregate distribution among crop phases, at least within the crop phase the 

fungal abundance was measured.  However, effects of management in one crop phase 

may have lag time and carry over into the next phase of a rotation.  Cover crops in wheat 

are incorporated the following spring prior to corn planting.  Schutter et al. (2001) 

showed that spring-incorporated cover crops can enhance fungal abundance in the crop 

phase in which they were incorporated.  If this is the case in our study, corn (as the crop 

phase following wheat/cover crop) should have increased fungal abundance during the 

early growing season, potentially influencing soil aggregation during this phase.  

Additional sampling events during the early growing season would be necessary to 

confirm this hypothesis.  

 Composition of the microbial community as determined by PCA was only 

minimally affected by crop phase, and these effects diminished with decreasing soil 

fraction size.  Reduction in community sensitivity with decreasing aggregate size to 

different cropping regimes has been observed previously (Trivedi et al., 2015). In our 

study, differences in community composition were only detectable in M and m soil 

fractions.   The observed differences in groups which drive variability in community 
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composition did not correlate with our relative abundance results.  In M, the community 

separated marginally along PC1 in 2015 alone and significantly along PC2 in both years.  

PC1 and PC2 in 2015 accounted for 71.1% and 13.4% of community variation 

respectively, while PC2 in 2014 accounted for 16.4% of variability.  In both years, the 

PCA indicated that the soybean phase was driven mainly by the Gm- biomarkers and the 

AMF biomarker cis16:1ω5.  The wheat phase was driven by SF biomarkers cis18:1ω9 

and cis18:2ω6,9 or Gm+ biomarkers, which contrasts with our result that SF relative 

abundance was lower in wheat than corn and soybean, and AMF abundance in M of 

wheat was higher than soybean in both years.  Though AMF relative abundance was 

lower in soybean compared with wheat, it is possible that this group still drives the 

community composition if its mol % is overall greater as compared with other groups.  

As organic fertilizer amendments (poultry manure) are not used in the soybean phase, 

perhaps soybeans rely on AMF to obtain limiting nutrients such as phosphorous (P).  

AMF is generally limited in its ability to colonize plant roots if nutrients are readily 

available, including those provided by organic fertilizers (Gosling et al., 2006).  Where 

corn separated from the other two crop phases along PC2, community variability was 

driven by SF biomarkers in 2014 and AMF and Gm- biomarkers in 2015.  This is again in 

contrast with our ecological group relative abundance results as SF abundance in M of 

corn was lower than soybean in 2014 and AMF abundance was lower than wheat in 2015.    

 For m community composition, separation based on crop phase was only 

observed along PC1 in 2014 between corn and soybean, accounting for 52.6% of 

community variation.  The corn phase community variability was apparently driven by 

Gm+, Gm-, and actinomycete biomarkers.  This finding was supported by Buyer et al. 
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(2010), as non-cover cropped treatments (such as the corn phase in our rotation) were 

shown to increase Gm+ abundance.  Again the soybean community composition 

appeared to be driven by the AMF biomarker.  This relationship was weaker in m, 

however, as soybean was correlated with negative values of PC1 for which no biomarkers 

were associated.  The AMF biomarker came closest with the smallest positive PC1 

values.  Perhaps at the m scale, carbon sources are different from larger aggregates, 

influencing microbial ecological group abundance.   

These results support our hypothesis that microbial community composition 

would vary to some degree by crop phase, but emphasize that a great deal of unexplained 

variability exists in regard to the results of our analysis. Variability was only partially 

explained by temporal (year), spatial (block, subsample) and management (crop phase) 

effects. There are likely many other factors including environmental variables (e.g. 

temperature, moisture) and soil properties (e.g. pH, nutrient composition) that we did not 

consider within the context of this study which impact community composition. 

Temperature, moisture and pH are important predictors of bacterial community 

composition (Buyer et al., 2010; Lauber et al., 2008; Ngosong et al., 2010), while soil 

nutrients are better predictors of fungal composition (Lauber et al., 2008; Suzuki et al., 

2009).   

Conclusions 

 

This study investigated whether microbial community composition is an 

underlying factor in the observed crop phase effect on soil aggregation.  Total biomass 

and relative abundance of the five microbial ecological groups investigated were affected 

by crop phase, though these effects differed with year and decreased with decreasing soil 
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aggregate size.  In 2015, when sampling time was the same across all three crop phases, 

the wheat phase with a standing cover crop had a greater total biomass, higher relative 

abundance of AMF, and higher F:B than corn and soybean with none, emphasizing the 

important impacts of cover crops on community composition and abundance of specific 

microbial ecological groups.  Corn and soybean tended to have higher relative abundance 

of Gm+ and actinomycetes in 2015 indicating increased disturbance in these phases.  

Differences in microbial community composition were also observed, though these were 

mainly restricted to larger soil aggregate fractions and did not reflect which ecological 

groups were most abundant.  SF was a driver of community variability in M of the wheat 

phase, while AMF was a primary driver of microbial community variability in soybean.  

We did not find evidence for a direct link between fungal abundance and level of soil 

aggregation observed in crop phases within the year the phase was sampled.  There is 

evidence that effects of management may carry over into the following season, affecting 

community composition in the next crop phase of the rotation.  We hypothesize that this 

may be the case in our rotation, as the cover-cropped wheat phase may induce increased 

AMF abundance during the early growing season of the corn phase in the following year.  

Moreover, microbial community composition is affected by a wide range of factors 

beyond agricultural management that we did not account for (e.g. environmental, 

physical).  These variables likely impact community composition in ways that are not yet 

well-understood.  Additional sampling events throughout the season would provide more 

insight into the effects of time within the growing season, management events, and 

environmental factors such as soil temperature and moisture on microbial communities. 
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Tables and Figures 

 

Table 2.1 Lipid biomarkers used in analysis of microbial ecological groups.  Lipids used 

were present in amounts higher than 0.5 mol %. 
Microbial ecological group Lipid biomarkers corresponding to group 

 

Gram-positive bacteria (Gm+)a,b 

 

i14:0, i15:0, a15:0, i16:0, i17:0, a17:0 

 

Gram-negative bacteria (Gm-)b 

 

cis16:1ω7, cy17:0, cis18:1ω7c, cy19:0 

 

Arbuscular mycorrhizal fungi (AMF)c 

 

cis16:1ω5 

 

Saprotrophic fungi (SF)c,d 

 

cis18:1ω9, cis18:2ω6,9 

 

Actinomycetesd  

 

 

10Me16:0, 10Me17:0, 10Me18:0 

References: 
a Zelles et al.(1992) 
b Frostegard et al. (1993) 
c Balser et al. (2005) 
d Federle et al. (1986) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



88 

 

Table 2.2 Total lipid biomass, F:B, and associated p-values in the organic grain rotation 

at WICST, 2014-2015.   
Crop phase, 

year, and soil 

fraction† 

 

Total Biomass (µmol g soil-1) 

 

F:B 

   

Corn 2014 

M 

m 

s+c 

 

 

0.195(0.005)‡ 

0.175(0.018) 

0.108(0.014) 

 

0.697(0.022) 

0.399(0.024) 

0.295(0.016) 

Corn 2015   

 M 0.228(0.012) 1.006(0.077) 

             m 0.227(0.007) 0.600(0.010) 

             s+c 0.105(0.004) 0.433(0.007) 

   

Soybean 2014 

M 

m 

s+c 

 

 

0.226(0.018) 

0.205(0.011) 

0.098(0.007) 

 

 

0.756(0.085) 

0.343(0.013) 

0.249(0.009) 

Soybean 2015   

      M 0.223(0.011) 0.872(0.058) 

     m   0.247(0.009) 0.616(0.022) 

       s+c 0.106(0.005) 0.429(0.009) 

   

Wheat 2014 

M 

m 

s+c 

 

 

0.187(0.011) 

0.198(0.009) 

0.097(0.011) 

 

0.641(0.039) 

0.409(0.021) 

0.258(0.016) 

Wheat 2015   

      M 0.348(0.016) 1.512(0.070) 

      m 0.276(0.014) 0.821(0.028) 

        s+c 0.121(0.005) 0.542(0.017) 

   

 ANOVA 

 p-values 

 Total Biomass F:B 

Soil Fraction Crop  Year Year × Crop Crop  Year Year × Crop 

M 0.0134  <0.0001 <0.0001 0.0005  <0.0001 <0.0001 

m 0.4305  <0.0001 0.2713 0.0130  <0.0001 <0.0001 

s+c 0.8026  0.1558 0.2652 0.0564  <0.0001 <0.0001 

         

†M = macroaggregates; m = microaggregates; s+c = silt and clay. 

‡ Numbers in parentheses indicate standard errors of displayed means. 
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Table 2.3 P-values of fixed effects for statistical models determining significant 

differences among crop phases for relative abundance of microbial ecological groups by 

soil fraction, 2014-2015. 

†Gm+ = gram positive bacteria; Gm- = gram negative bacteria; AMF = arbuscular 

mycorrhizal fungi; SF = saprotrophic fungi; M = macroaggregates; m = microaggregates; 

s+c = silt and clay. 

 

 

 

 

 

 

 

 

 

 

 

Ecological 

group and soil 

fraction† 

 

ANOVA 

p-values 

Crop  Year Year × Crop 

Gm+ 

M 

m 

s+c 

 

 

0.0606 

0.0203 

0.1415 

  

<0.0001 

0.0426 

<0.0001 

 

0.0005 

<0.0001 

0.0002 

Gm- 

M 

m 

s+c 

 

 

0.0518 

0.6856 

0.1338 

  

0.1156 

0.0002 

<0.0001 

 

0.0077 

0.3190 

0.0003 

AMF 

M 

m 

s+c 

 

 

0.0119 

0.0331 

0.0127 

  

0.0004 

<0.0001 

<0.0001 

 

<0.0001 

<0.0001 

0.0037 

SF 

M 

m 

s+c 

 

 

0.0047 

0.3315 

0.5402 

  

0.8716 

<0.0001 

<0.0001 

 

0.0244 

0.0020 

0.2435 

Actinomycetes 

M 

m 

s+c 

 

 

0.0325 

0.0123 

0.1493 

  

0.0626 

0.0018 

<0.0001 

 

0.0009 

0.0018 

0.0017 
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Figure 2.1 Average mol% of five microbial ecological groups separated by soil fraction 

for 2014.  Error bars represent standard error of displayed means.  Where statistical 

differences exist within soil fractions lowercase letters are shown. a) Gram-positive 

bacterial biomarkers (Gm+) b) Gram-negative bacterial biomarkers (Gm-) c) Arbuscular 

mycorrhizal fungi biomarker (AMF) d) Saprotrophic fungi biomarkers (SF) e) 

Actinomycete biomarkers.        M = macroaggregates; m = microaggregates; s+c = silt 

and clay.  
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Figure 2.2 Average mol% of five microbial ecological groups separated by soil fraction 

for 2015.  Error bars represent standard error of displayed means.  Where statistical 

differences exist within soil fractions lowercase letters are shown. a) Gram-positive 

bacterial biomarkers (Gm+) b) Gram-negative bacterial biomarkers (Gm-) c) Arbuscular 

mycorrhizal fungi biomarker (AMF) d) Saprotrophic fungi biomarkers (SF) e) 

Actinomycete biomarkers.        M = macroaggregates; m = microaggregates; s+c = silt 

and clay. 
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Figure 2.3 Plots of PC1 versus PC2 from multivariate PCA of lipid biomarkers of the 

corn, soybean, and wheat phases, separated by soil fraction, 2014.  Significant separation 

among crop phases along PC1 and PC2 was determined through a general linear mixed 

effects model in SAS version 9.4.  Error bars represent standard errors of the displayed 

PC means. a) Macroaggregates b) Microaggregates c) Silt and Clay. 
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Figure 2.4 Plots of PC1 versus PC2 from multivariate PCA of lipid biomarkers of the 

corn, soybean, and wheat phases, separated by soil fraction, 2015.  Significant separation 

among crop phases along PC1 and PC2 was determined through a general linear mixed 

effects model in SAS version 9.4.  Error bars represent standard errors of the displayed 

PC means. a) Macroaggregates b) Microaggregates c) Silt and Clay. 
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Conclusions 

 

 Our findings indicate that aggregate distribution differed significantly among crop 

phases, with the corn phase of 2014 and both corn and soybean in 2015 having a higher 

proportion of large soil aggregates (macroaggregates) and associated occluded aggregate 

fractions than the wheat phase in either year.  The high level of aggregation in corn and 

soybean occurred in spite of an intensive tillage and cultivation regime.  High soil C 

inputs also occur in the corn phase relative to both the soybean and wheat phases.  While 

tillage is known to reduce the level of aggregation in soils compared with no-till (Baker 

et al., 2007; Sheehy et al., 2015; Six et al., 1998, 2000a), our findings and the findings of 

others (Andruschkewitsch et al., 2014; Williams and Petticrew, 2009) suggest that 

sufficient C input may be able to counteract negative effects of tillage on aggregate 

formation.  Though we saw significant differences in aggregate distribution among crop 

phases, these differences did not result in a reallocation of aggregate C content in 

aggregate fractions from crop phase to crop phase.  Aggregate C content was largely 

unaffected by crop phase, though spatial variation (differences between experimental 

plots) did appear to play a role as crop phases in 2015 often had similar levels of 

aggregate C content as their previous rotational phase in 2014.  Other studies have shown 

that aggregate C content is sensitive to management changes (Crittenden et al., 2015; 

Doane et al., 2003; Whitbread et al., 2000), and that aggregates can serve as ideal 

indicators of early SOC dynamics (Denef et al., 2007), however, we did not observe this 

in our study.  The lack of observable differences in C content due to crop phase is not 

surprising given the age (26 years) of this well-established rotation, which has likely 
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reached an equilibrium within experimental plots with respect to SOC content among the 

three crop phases. 

 With respect to the microbial community, we found that the wheat phase had a 

larger total biomass and higher fungal abundance (particularly of AMF) than either the 

corn or soybean phases in 2015 when sampling time was the same for all three phases.  

This finding was somewhat expected, as the wheat phase had an established oat/berseem 

clover cover crop at the time of sampling in 2015 as well as reduced tillage pressure, 

while corn and soybean had little to no vegetation and increased tillage pressure.  Cover 

crops are known to increase microbial biomass as well as fungal abundance (Buyer et al., 

2010; Wortman et al., 2013).  Conversely, SF abundance was reduced in wheat versus 

corn and soybean in 2015.  This result was surprising in that intensely-tilled soils, such as 

those in the corn and soybean phases, are known to reduce fungal abundance as hyphal 

networks are disrupted (Lienhard et al., 2013).  Findings of Mbuthia et al. (2015), 

however, support our results in that increased abundance of SF was noted in tilled soils 

compared with no-till.  Increased fungal abundance overall in the wheat phase in 2015, as 

indicated by increased F:B over corn and soybean, was inconsistent with our observation 

of increased aggregation in the corn phase.  We would have expected that increased 

fungal abundance and higher aggregation would be observed simultaneously within the 

same crop phase, as fungi are known to be major drivers of the aggregation process 

(Bossuyt et al., 2001; Rillig and Mummey, 2006).  These findings indicate that perhaps 

microbial community composition and abundance of specific microbial ecological groups 

within a specific crop phase is not an ideal indicator of soil aggregation.  Additionally, 

limited significant differences observed with respect to which ecological groups describe 
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the majority of variability in community composition emphasize that perhaps the 

community is not extremely different among the crop phases in our study, at least at the 

time of year that we sampled. 

 Overall, our findings suggest that soil aggregation and abundance of particular 

microbial ecological groups are affected by specific management practices imposed in 

individual crop phases in organic grain rotations.  This finding is important because much 

of the existing body of literature on SOC and soil aggregate dynamics, both at WICST 

and elsewhere, focuses on the differences between entire crop rotations instead of 

singular phases or between conventional and organic cropping systems (Andruschkewitsh 

et al., 2013; Birkhofer et al., 2008; Padbhushan et al., 2016).  This is especially true in 

experiments conducted in long-term trials, where conclusions have been routinely drawn 

based on a single sampling event or samples taken within one crop phase instead of 

sampling multiple or all phases of a rotation (Cates et al., 2016; Jokela et al., 2011).  Such 

studies limit their frame of inference by ignoring potential differences that might exist in 

soil structural and chemical makeup between crop phases within rotations, or by 

assuming cropping system soil structure and chemistry are constant.  Reliance on a single 

phase of a rotation to represent an entire cropping system, and then using this information 

to compare to other entire cropping systems, may lead to inaccurate characterizations and 

therefore inaccurate management and policy recommendations.  Additional sampling 

events, which account for variability of individual crop, should provide an improved 

ability to describe our soils in complex rotations, thus improving management 

recommendations for SOC retention developed from scientific findings.  Future work 

should be directed at understanding seasonal variability in soil aggregate and microbial 
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community dynamics.  By gaining an expanded picture of processes behind SOC storage 

and stabilization, we will enhance our ability to ensure that management strategies are 

appropriate to meet sustainability and soil health goals. 

Previous literature has documented that crop management regimes affect soil 

aggregation, SOC content, and microbial biomass.  Specifically, the positive impacts of 

organic production practices on soil structure, SOC content (Foereid and Høgh-Jensen, 

2004; Gerhardt, 1997), and microbial biomass as compared to conventionally-managed 

soils have been shown (Birkhofer et al., 2008; Ullrich et al., 2011). However, within the 

organic grain rotation at WICST, SOC declined over 20 years and lower total aggregation 

was observed versus other cropping systems (Cates et al., 2016; Sanford et al., 2012) 

despite use of practices beneficial to SOC storage and soil quality including cover-

cropping and manure application, thus demonstrating continued lack of clarity as to the 

more nuanced impacts of organic management in specific soil environments, particularly 

where background levels of SOC are high. While our findings are specific to organically-

managed grain rotations in the C-rich Mollisols of the North Central U.S. corn belt, they 

are no less important as organic production methods gain popularity and acreage 

continues to expand in the U.S.  Understanding SOC dynamics and provisioning of 

ecosystem services such as SOC stabilization or sequestration are key objectives in the 

organic community. 
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Appendix I: Photographs of aggregate fractionation equipment and setup 

Figure A.1 Sieves and metal basins used in wet-sieving (Step A) of aggregate 

fractionation. 

 

Figure A.2 Microaggregate isolator used in Step B of aggregate fractionation. 
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Figure A.3 250-µm mesh circle and final sieve and metal basin used in microaggregate 

isolation (Step B) of aggregate fractionation. 
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Appendix II:  Statistical Code 

Models for aggregate distribution, Chapter I 

data  soilprop;  

infile  'C:/Users/Owner/Dropbox/Monica_Daane/Monica_Stats/Data Txt 

Files/CERES soil wo BL.txt'  firstobs  = 2 expandtabs ;  

input  loc$ year event$ plot sys$ crop$ rot$ block cov frac$ soil_wt 

prop prop_ws c_pct actual_c_pct c_mg_g cpool_g biomass FB;  

 

proc  sort  data =soilprop;  

by  frac;  

run ;  

 

title  'aggregate proportions' ;  

proc  glimmix  data =soilprop nobound  plots =studentpanel;  

by  frac;  

class  year crop block;  

model  prop_ws=year crop year*crop cov; *using sp_trt as a covariate 

does improve residuals plots;  

random  block block*crop;  

lsmeans  year*crop/ slice =year lines  adjust =tukey;  

lsmeans  year*crop/ slicediff =year lines  adjust =tukey;  

run ;  

 

Models for aggregate C content, Chapter I 

 
data  soilprop;  

infile  'C:/Users/Owner/Dropbox/Monica_Daane/Monica_Stats/Data Txt 

Files/CERES soil wo BL.txt'  firstobs  = 2 expandtabs ;  

input  loc$ year event$ plot sys$ crop$ rot$ block cov frac$ soil_wt 

prop prop_ws c_pct actual_c_pct c_mg_g cpool_g biomass FB;  

 

proc  sort  data =soilprop;  

by  frac;  

run ;  

 

title  'aggregate proportions' ;  

proc  glimmix  data =soilprop nobound  plots =studentpanel;  

by  frac;  

class  year crop block;  

model  c_pct=year crop year*crop cov/ dist =lognormal ddfm =kr; *using 

sp_trt as a covariate does improve residuals plots;  

random  block block*crop;  

lsmeans  year*crop/ slice =year lines  adjust =tukey;  

lsmeans  year*crop/ slicediff =year lines  adjust =tukey;  

run ;  
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Correlations of Soil Aggregation (Macroaggregate Prop.) vs. C Inputs, Chapter I 

 
data  carbonagg;  

input  year  plot  crop$  AG BG Total  macros  macroerr;  

datalines ;  

2014  102  corn  5644  2415  8058  0.86937  0.007624  

2014  313  corn  4660  1835  6495  0.85562  0.017984  

2014  407  corn  5712  2455  8167  0.88343  0.008035  

2014  106  soybean  2049  1084  3133  0.63115  0.036885  

2014  307  soybean  2185  1155  3340  0.61655  0.01363  

2014  411  soybean  2217  1172  3389  0. 62043  0.012965  

2014  104  wheat  2403  348  2751  0.69192  0.007483  

2014  301  wheat  2546  560  3106  0.61668  0.018047  

2014  402  wheat  2523  526  3048  0.63745  0.029738  

2015  104  corn  6023  2559  8582  0.74265  0.01066  

2015  301  corn  5976  2531  8507  0.67472  0.023569  

2015  402  corn  5516  2260  7776  0.74303  0.013074  

2015  102  soybean  2154  1139  3293  0.73375  0.013127  

2015  313  soybean  1959  1036  2994  0.68645  0.015336  

2015  407  soybean  2039  1078  3118  0.72288  0.012156  

2015  106  wheat  2433  811  3244  0.6172  0.020913  

2015  307  wheat  2460  863  3323 0.65923  0.021418  

2015  411  wheat  2466  848  3314  0.64305  0.021112  

;  

 

proc  corr ;  

var  macros total; *macroaggregate corr. with total c input  

run ;  

 

proc  corr ;  

var  macros AG; *macroaggregate corr. with aboveground  c input  

run ;  

 

proc  corr ;  

var  macros BG; *macroaggregate corr. with belowground  c input  

run ;  

 

 

Models for Total Microbial Biomass and F:B, Chapter II 

 
data  biofb;  

infile  'C:/Users/Owner/Dropbox/Monica_Daane/Monica_Stats/Data Txt 

Files/Microbial Data/Biomass FB.txt'  firstobs  = 2 expandtabs ;  

input  Year Block Plot Crop$ cov Fraction$ Total Bac Fungi FB;  

 

data  a; set  biofb;  *removal of outliers, points with errors far beyond 

2 SD of mean  

if  FB=2.2192  then  delete ;  

if  FB=2.3492  then  delete ;  

if  FB=1.7760  then  delete ;  

if  FB=1.6892  then  delete ;  

if  FB=0.7092  then  delete ;  

 

if  Total= 0.9289  then  delete ;  
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if  Total= 0.5576  then  delete ;  

if  Total= 0.4940  then  delete ;  

if  Total= 0.3386  then  delete ;  

if  Total= 0.2829  then  delete ;  

if  Total= 0.2687  then  delete ;  

run ;  

 

proc  sort  data =a;  

by  fraction;  

run ;  

 

title  'microbial biomass' ;  

proc  glimmix  data =a nobound  plots =studentpanel;  

by  fraction;  

class  year crop block;  

model  total=year crop year*crop cov; *using sp_trt as a covariate does 

improve residuals plots;  

random  block block*crop;  

lsmeans  year*crop/ slice =year lines  adjust =tukey;  

lsmeans  year*crop/ slicediff =year lines  adjust =tukey;  

run ;  

 

title  'F:B' ;  

proc  glimmix  data =a nobound  plots =studentpanel;  

by  fraction;  

class  year crop block;  

model  FB=year crop year*crop cov; *using sp_trt as a covariate does 

improve residuals plots;  

random  block block*crop;  

lsmeans  year*crop/ slice =year lines  adjust =tukey;  

lsmeans  year*crop/ slicediff =year lines  adjust =tukey;  

run ;  

 

Models for Microbial Ecological Group Rel. Abundance, Chapter II 

 
data  relabund;  

infile  'C:/Users/Owner/Dropbox/Monica_Daane/Monica_Stats/Data Txt 

Files/Microbial Data/Guilds relabund.txt'  firstobs  = 2 expandtabs ;  

input  Year Block Plot Crop$ Cov Fraction$ Gmpos Gmneg AMF Sapro Act;  

 

proc  sort  data =relabund;  

by  fraction;  

run ;  

 

data  gmp; set  relabund;  *removal of outliers  

if  Gmpos=1.400  then  delete ;  

run ;  

 

proc  sort  data =gmp;  

by  fraction;  

run ;  

 

 

data  gmn; set  relabund;  *removal of outliers  
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if  Gmneg=2.001  then  delete ;  

if  Gmneg=4.364  then  delete ;  

if  Gmneg=4.167  then  delete ;  

if  Gmneg=4.177  then  delete ;  

run ;  

 

proc  sort  data =gmn;  

by  fraction;  

run ;  

 

data  act; set  relabund;  *removal of outliers  

if  Act= 0.922  then  delete ;  

run ;  

 

proc  sort  data =act;  

by  fraction;  

run ;  

 

data  amf; set  relabund;  *removal of outliers  

if  AMF=1.407  then  delete ;  

if  AMF=1.400  then  delete ;  

if  AMF=14.619  then  delete ;  

if  AMF=8.653  then  delete ;  

if  AMF=10.458  then  delete ;  

run ;  

  

proc  sort  data =amf;  

by  fraction;  

run ;  

 

data  sf; set  relabund;  *removal of outliers  

if  Sapro= 9.446  then  delete ;  

if  Sapro= 2.389  then  delete ;  

if  Sapro= 8.484  then  delete ;  

if  Sapro= 2.174  then  delete ;  

if  Sapro= 7.180  then  delete ;  

run ;  

proc  sort  data =sf;  

by  fraction;  

run ;  

 

title  'Gm+' ;  

proc  glimmix  data =gmp nobound  plots =studentpanel;  

by  fraction;  

class  year crop block;  

model  gmpos=year crop year*crop cov; *using sp_trt as a covariate does 

improve residuals plots;  

random  block block*crop;  

lsmeans  year*crop/ slice =year lines  adjust =tukey;  

lsmeans  year*crop/ slicediff =year lines  adjust =tukey;  

run ;  

 

 

title  'Gm- ' ;  
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proc  glimmix  data =gmn nobound  plots =studentpanel;  

by  fraction;  

class  year crop block;  

model  gmneg=year crop year*crop cov; *using sp_trt as a covariate does 

improve residuals plots;  

random  block block*crop;  

lsmeans  year*crop/ slice =year lines  adjust =tukey;  

lsmeans  year*crop/ slicediff =year lines  adjust =tukey;  

run ;  

 

title  'Act' ;  

proc  glimmix  data =act nobound  plots =studentpanel;  

by  fraction;  

class  year crop block;  

model  act=year crop year*crop cov; *using sp_trt as a covariate does 

improve residuals plots;  

random  block block*crop;  

lsmeans  year*crop/ slice =year lines  adjust =tukey;  

lsmeans  year*crop/ slicediff =year lines  adjust =tukey;  

run ;  

 

title  'AMF' ;  

proc  glimmix  data =amf nobound  plots =studentpanel;  

by  fraction;  

class  year crop block;  

model  amf=year crop year*crop cov/ dist =lognormal ddfm =kr; *using sp_trt 

as a covariate does improve residuals plots;  

random  block block*crop;  

lsmeans  year*crop/ slice =year lines  adjust =tukey;  

lsmeans  year*crop/ slicediff =year lines  adjust =tukey;  

run ;  

 

title  'SF' ;  

proc  glimmix  data =sf nobound  plots =studentpanel;  

by  fraction;  

class  year crop block;  

model  sapro=year crop year*crop cov/ dist =lognormal ddfm =kr; *using 

sp_trt as a covariate does improve residuals plots;  

random  block block*crop;  

lsmeans  year*crop/ slice =year lines  adjust =tukey;  

lsmeans  year*crop/ slicediff =year lines  adjust =tukey;  

run ;  

 

Principal Component Analysis Performed in JMP, Chapter II 

 
Principal Components (  
 Y(  
  : Name(  "14:0 ISO"  ) ,  
  : Name(  "15:0 ANTEISO"  ) ,  
  : Name(  "15:0 ISO"  ) ,  
  : Name(  "16:0 10 Methyl"  ) ,  
  : Name(  "16:0 ISO"  ) ,  
  : Name(  "16:1 w5c"  ) ,  
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  : Name(  "16:1 w7c"  ) ,  
  : Name(  "17:0 10 Methyl"  ) ,  
  : Name(  "17:0 ANTEISO"  ) ,  
  : Name(  "17:0 CYCLO"  ) ,  
  : Name(  "17:0 ISO"  ) ,  
  : Name(  "18:0 10 Methyl"  ) ,  
  : Name(  "18:1 w7c"  ) ,  
  : Name(  "18:1 w9c"  ) ,  
  : Name(  "18:2 w6,9c"  ) ,  
  : Name(  "19:0 CYCLO"  )  
 ) ,  
 Estimation Method (  "Row- wise"  ) ,  
 "on Correlations" ,  
 Arrow Lines (  1 ) ,  

 Where(  : Fraction == "mac"  ) ,  **This analysis for macroaggregates                 
ÓÐÅÃÉÆÉÃÁÌÌÙƘ &ÒÁÃÔÉÏÎ ˮˮ ƧÍÉÃƨ ÏÒ ƧÓÃƨ ÆÏÒ ÍÉÃÒÏÁÇÇÒÅÇÁÔÅÓ ÏÒ ÓÉÌÔ ÁÎÄ 
clay, respectively**  

 SendToReport (  
  Dispatch (  
   { "Summary Plots" } ,  
   "PCA Summary Plots" ,  
   FrameBox,  
   { Frame Size (  49,  37 )}  
  ) ,  
  Dispatch (  
   { "Summary Plots" } ,  
   "PCA Summary Plots" ,  
   FrameBox(  2 ) ,  
   { Frame Size (  52,  37 )}  
  )  
 

Linear Mixed-Effect Models for Determination of Variability Contributed by Principal 

Component Analysis Factors performed in R, Chapter II 

 
> setwd("C:/Users/Owner/Dropbox/Monica_Daane PCA")  
> PCA1 < -  read.table("PCs 1415.txt",header=TRUE,row.names=NULL)  
>  
> PCA1mac < - subset(PCA1, Fraction=="mac")  *PC1, macroaggregates  
> attach(PCA1mac)  
> names(PCA1mac)  
[1] "Year"     "Block"    "Plot"     "Crop"     "Subplot"  "Fraction"  
[7] "Prin1"    "Prin2"    "Prin3"    
>  
> library(nlme)  
>  
> pc1.var.lme.mac< - lme(Pr in1~1,PCA1mac,~1|Year/Block/Crop/Subplot)  
>  
> summary(pc1.var.lme.mac)  
Linear mixed - effects model fit by REML  
 Data: PCA1mac  
       AIC      BIC    logLik  
  548.3213 564.5785 - 268.1607  
Random effects:  
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 Formula: ~1 | Year  
        (Intercept)  
StdDev:    1.110597  
 
 Formula: ~1 | Block %in% Year  
         (Intercept)  
StdDev: 5.325987e - 06 
 
 Formula: ~1 | Crop %in% Block %in% Year  
        (Intercept)  
StdDev:    1.752688  
 
 Formula: ~1 | Subplot %in% Crop %in% Block %in% Year  
         (Intercept) Residual  
StdDev : 0.0002572494 2.352226  
 
Fixed effects: Prin1 ~ 1  
                  Value Std.Error DF     t - value p - value  
(Intercept) - 0.01602579 0.9148477 90 - 0.01751744  0.9861  
 
Standardized Within - Group Residuals:  
        Min          Q1         Med          Q3         Max  
- 1.79587912 - 0.66653459 - 0.09785667  0.51711774  3.15373454  
 
Number of Observations: 112  
Number of Groups:  
                                  Year  
                                     2  
                       Block %in% Year  
                                     6  
             Crop %in% Block %in% Year  
                                    18  
Subplot %in% Crop %in% Block %in% Year  
                                   108  
>  
> 1.110597/ - 0.01602 579  
[1] - 69.30061  
>    
> 5.325987e - 06/ - 0.01602579  
[1] - 0.0003323385  
>    
> 1.752688/ - 0.01602579  
[1] - 109.3667  
>    
> 0.0002572494/ - 0.01602579  
[1] - 0.01605221  
>    
> 2.352226/ - 0.01602579  
[1] - 146.7775  
>  
> - 69.30061+ - 0.0003323385+ - 109.3667+ - 0.01605221+ - 146.7775  
[1] - 325.4612  
>  
> - 69.30061/ - 325.4612  
[1] 0.2129305  
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>  
> - 0.0003323385/ - 325.4612  
[1] 1.021131e - 06 
>  
> - 109.3667/ - 325.4612  
[1] 0.3360361  
>  
> - 0.01605221/ - 325.4612  
[1] 4.932142e - 05 
>  
> - 146.7775/ - 325.4612  
[1] 0.4509831  
>  
> PCA1mic < - subset(PCA1, Fraction=="mic")  *PC1, microaggregates  
> attach(PCA1mic)  
 
> names(PCA1mic)  
[1] "Year"     "Block"    "Plot"     "Crop"     "Subplot"  "Fraction"  
[7] "Prin1"    "Prin2"    "Prin3"    
>  
> pc1.var.lme.mic< - lme(Prin1~1,PCA1mic,~1|Year/Block/Crop/Subplot)  
>  
> summary(pc1.var.lme.mic)  
Linear mixed - effects model fit by REML  
 Data: PCA1mic  
       AIC      BIC    logLik  
  523.5587 539.5956 - 255.7793  
 
Random effects:  
 Formula: ~1 | Year  
        ( Intercept)  
StdDev:   0.5404675  
 
 Formula: ~1 | Block %in% Year  
        (Intercept)  
StdDev:   0.2234106  
 
 Formula: ~1 | Crop %in% Block %in% Year  
        (Intercept)  
StdDev:   0.9960437  
 
 Formula: ~1 | Subplot %in% Crop %in% Block %in% Year  
        ( Intercept)  Residual  
StdDev:    2.306813 0.7714505  
 
Fixed effects: Prin1 ~ 1  
                   Value Std.Error DF      t - value p - value  
(Intercept) 2.777789e - 11 0.5140727 90 5.403495e - 11       1  
 
Standardized Within - Group Residuals:  
        Min          Q 1         Med          Q3         Max  
- 0.67911171 - 0.15649059 - 0.01526728  0.13150313  1.27149720  
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Number of Observations: 108  
Number of Groups:  
                                  Year  
                                     2  
                       Block %in% Year  
                                     6  
             Crop %in% Block %in% Year  
                                    18  
Subplot %in% Crop %in% Block %in% Year  
                                   108  
>  
> 0.5404675/2.777789e - 11 
[1] 19456751395  
>    
> 0.2234106/2.777789e - 11 
[1] 8042749107  
>    
> 0.9960437/2.777789e - 11 
[1] 35857428336  
>    
> 2.306813/2.777789e - 11 
[1] 83044932498  
>    
> 0.7714505/2.777789e - 11 
[1] 27772105801  
>  
> 19456751395+8042749107+3585742 8336+83044932498+27772105801  
[1] 1.74174e+11  
>  
> 19456751395/1.74174e+11  
[1] 0.1117087  
>    
> 8042749107/1.74174e+11  
[1] 0.04617652  
>    
> 35857428336/1.74174e+11  
[1] 0.2058713  
>    
> 83044932498/1.74174e+11  
[1] 0.4767929  
>    
> 27772105801/1.74174e+11  
[1] 0.1594504  
>  
>  
> PCA1sc < - subset(PCA1, Fraction=="sc")  *PC1, silt and clay  
> attach(PCA1sc)  
 
> names(PCA1sc)  
[1] "Year"     "Block"    "Plot"     "Crop"     "Subplot"  "Fraction"  
[7] "Prin1"    "Prin2"    "Prin3"    
>  
> pc1.var.lme.sc< - lme(Prin1~1,PC A1sc,~1|Year/Block/Crop/Subplot)  
>  
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> summary(pc1.var.lme.sc)  
 
Linear mixed - effects model fit by REML  
 Data: PCA1sc  
       AIC      BIC    logLik  
  482.5479 498.2386 - 235.2739  
 
Random effects:  
 Formula: ~1 | Year  
        (Intercept)  
StdDev:    2.382048  
 
 Formula: ~1 | Block %in% Year  
         (Intercept)  
StdDev: 0.0004218595  
 
 Formula: ~1 | Crop %in% Block %in% Year  
        (Intercept)  
StdDev:    1.381152  
 
 Formula: ~1 | Subplot %in% Crop %in% Block %in% Year  
        (Intercept)  Residual  
StdDev:    2.158795 0.1693727  
 
 
Fixed effects: Prin1 ~ 1  
                 Value Std.Error DF    t - value p - value  
(Intercept) 0.08903537  1.729049 84 0.05149383  0.9591  
 
Standardized Within - Group Residuals:  
          Min            Q1           Med            Q3           Max  
- 0.2090626267 - 0.0300834045  0.0006139695  0.0272240516  0.2595234294  
 
Number of Observations: 102  
Number of Groups:  
                                  Year  
                                     2  
                       Block %in% Year  
                                     6  
             Crop %in% Block %in% Year  
                                    18  
Subplot %in% Crop %in% Block %in% Year  
                                   102  
>  
> 2.382048/0.08903537  
[1] 26.75395  
>    
> 0.0004218595/0.08903537  
[1] 0.004738111  
>    
> 1.381152/0.08903537  
[1] 15.5124  
>    
> 2.158795/0.08903537  
[1] 24.24649     
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> 0.1693727/0.08903537  
[1] 1.902308  
>  
> 26.75395+0.004738111+15.5124+24.24649+1.902308  
[1]  68.41989  
>  
> 26.75395/68.41989  
[1] 0.3910259  
>    
> 0.004738111/68.41989  
[1] 6.925049e - 05 
>    
> 15.5124/68.41989  
[1] 0.2267235  
>    
> 24.24649/68.41989  
[1] 0.3543778  
>    
> 1.902308/68.41989  
[1] 0.02780344  
>  
> attach(PCA1mac)  
>  
 
> pc2.var.lme.mac< - lme(Prin2~1,PCA1mac,~1|Year/Block/Crop/Subplot)  
>  
> summary(pc2.var.lme.mac)  *PC2, macroaggregates  
Linear mixed - effects model fit by REML  
 Data: PCA1mac  
       AIC      BIC    logLik  
  415.1136 431.3708 - 201.5568  
 
Random effects:  
 Formul a: ~1 | Year  
        (Intercept)  
StdDev:   0.4882906  
 
 Formula: ~1 | Block %in% Year  
         (Intercept)  
StdDev: 6.040318e - 05 
 
 Formula: ~1 | Crop %in% Block %in% Year  
        (Intercept)  
StdDev:   0.7583802  
 
 Formula: ~1 | Subplot %in% Crop %in% Block %in% Year  
        (Intercept)  Residual  
StdDev:    1.138344 0.7285904  
 
Fixed effects: Prin2 ~ 1  
                   Value Std.Error DF     t - value p - value  
(Intercept) - 0.006878904 0.4098482 90 - 0.01678403  0.9866  
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Standardized Within - Group Residuals:  
        Min          Q1         Med          Q3         Max  
- 1.01046325 - 0.37964047 - 0.09696861  0.32589003  1.79108054  
Number of Observations: 112  
Number of Groups:  
                                  Year  
                                     2  
                       Block %in% Year  
                                     6  
             Crop %in% Block %in% Year  
                                    18  
Subplot %in% Crop %in% Block %in% Year  
                                   108  
>  
> 0.4882906/ - 0.006878904  
[1] - 70.98378  
>  
> 6.040318e - 05/ - 0.006878904  
[1] - 0.008780931  
>  
> 0.7583802/ - 0.006878904  
[1] - 110.2472  
>  
> 1.138344/ - 0.006878904  
[1] - 165.4833  
>  
> 0.7285904/ - 0.006878904  
[1] - 105.9166  
>  
> - 70.98378+ - 0.008780931+ - 110.2472+ - 165.4833+ - 105.9166  
[1] - 452.6397  
>  
> - 70.98378/ - 452.6397  
[1] 0.1568218  
>    
> - 0.008780931/ - 452.6397  
[1] 1.939938e - 05 
>    
> - 110.2472/ - 452.6397  
[1] 0.243565  
>    
> - 165.4833/ - 452.6397  
[1] 0.3655961  
>    
> - 105.9166/ - 452.6397  
[1] 0.2339976  
>    
> pc2.var.lme.mic< - lme(Prin2~1,PCA1mic,~1|Year/Block/Crop/Subplot)  
>  
> summary(pc2.var.lme.mic)  *PC2, microaggregates  
Linear mixed - effects model fit by REML  
 Data: PCA1mic  
       AIC      BIC    logLik  
  327.3595 34 3.3965 - 157.6798  
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Random effects:  
 Formula: ~1 | Year  
        (Intercept)  
StdDev:    1.403704  
 
 Formula: ~1 | Block %in% Year  
        (Intercept)  
StdDev: 0.000484313  
 
 Formula: ~1 | Crop %in% Block %in% Year  
        (Intercept)  
StdDev:    1.053817  
 
 Formula: ~1 | Subplot %in% Crop %in% Block %in% Year  
        (Intercept)   Residual  
StdDev:      0.8429 0.09211367  
 
Fixed effects: Prin2 ~ 1  
                   Value Std.Error DF       t - value p - value  
(Intercept) - 4.32993e - 15  1.026424 90 - 4.218463e - 15       1 
 
Standardized Within - Group Residuals:  
         Min           Q1          Med           Q3          Max  
- 0.235957748 - 0.064895781  0.005482075  0.062201503  0.259615893  
 
 
Number of Observations: 108  
Number of Groups:  
                                  Year  
                                     2  
                       Block %in% Year  
                                     6  
             Crop %in% Block %in% Year  
                                    18  
Subplot %in% Cro p %in% Block %in% Year  
                                   108  
>  
> 1.403704/ - 4.32993e - 15 
[1] - 3.241863e+14  
>    
> 0.000484313/ - 4.32993e - 15 
[1] - 111852385604  
>    
 
> 1.053817/ - 4.32993e - 15 
[1] - 2.433797e+14  
>    
> 0.8429/ - 4.32993e - 15 
[1] - 1.946683e+14  
>    
> 0.09211367/ - 4.32993e - 15 
[1] - 2.127371e+13  
>  
> - 3.241863e+14+ - 111852385604+ - 2.433797e+14+ - 1.946683e+14+ - 2.127371e+13  
[1] - 7.836199e+14  
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> - 3.241863e+14/ - 7.836199e+14  
[1] 0.4137035  
>    
> - 111852385604/ - 7.836199e+14  
[1] 0.0001427381  
>    
> - 2.433797e+14/ - 7.836199e+14  
[1] 0.3105839  
>    
> - 1.946683e+14/ - 7.836199e+14  
[1] 0.2484218  
>    
> - 2.127371e+13/ - 7.836199e+14  
[1] 0.027148  
>  
> pc2.var.lme.sc< - lme(Prin2~1,PCA1sc,~1|Year/Block/Crop/Subplot)  
>  
> summary(pc2.var.lme.sc)  *PC2, silt and clay  
Linear mixed - effects model fit by REML  
 Data: PCA1sc  
       AIC      BIC    logLik  
  315.6114 331.3021 - 151.8057  
 
Random effects:  
 Formula: ~1 | Year  
        (Intercept)  
StdDev:   0.7038412  
 
 Formula: ~1 | Block %in% Year  
        (Intercept)  
StdDev: 9.020 88e - 05 
 
 Formula: ~1 | Crop %in% Block %in% Year  
        (Intercept)  
StdDev:   0.6912488  
 
 Formula: ~1 | Subplot %in% Crop %in% Block %in% Year  
        (Intercept)   Residual  
StdDev:   0.9322261 0.06927908  
 
Fixed effects: Prin2 ~ 1  
               Value St d.Error DF    t - value p - value  
(Intercept) 0.045566 0.5319078 84 0.08566523  0.9319  
 
 
Standardized Within - Group Residuals:  
         Min           Q1          Med           Q3          Max  
- 0.299610966 - 0.024371343  0.001390094  0.031922460  0.201064704  
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Number of Observations: 102  
Number of Groups:  
                                  Year  
                                     2  
                       Block %in% Year  
                                     6  
             Crop %in% Block %in% Year  
                                    18  
Subplot %in% Crop %in% Block %in% Year  
                                   102  
> 0.7038412/0.045566  
[1] 15.44663  
>    
> 9.02088e - 05/0.045566  
[1] 0.001979739  
>    
> 0.6912488/0.045566  
[1] 15.17028  
>    
> 0.9322261/0.045566  
[1] 20.45881  
>    
> 0.06927908/0.045566  
[1] 1.520412  
>  
> 15.44663+0.001979739+15.17028+20.45881+1.520412  
[1] 52.59811  
>    
 
> 15.44663/52.59811  
[1] 0.2936727  
>    
> 0.001979739/52.59811  
[1] 3.763898e - 05 
>    
> 15.17028/52.59811  
[1] 0.2884187  
>    
> 20.45881/52.59811  
[1] 0.3889647  
>    
> 1.520412/52.59811  
[1] 0.02890621  

 

Models for Determination of Significant Differences in Principal Component Values by 

Crop Phase, Chapter II 

 
data  princomp;  

infile  'C:/Users/Owner/Dropbox/Monica_Daane/Monica_Stats/Data Txt 

Files/Microbial Data/PCs.txt'  firstobs  = 2 expandtabs ;  

input  Year Block Plot Crop$ Subplot Fraction$ PC1 PC2 PC3 pc1adj 

pc2adj;  
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proc  sort  data =princomp;  

by  Fraction Year;  

run ;  

 

data  c; set  princomp;  *removal of outliers in silt clay fraction  

where  Fraction= 'sc' ;  

if  pc2adj > 2.2 ;  

run ;  

 

proc  sort  data =c;  

by  Year;  

run ;  

 

title  'Prin comp 1' ;  

proc  glimmix  data =princomp nobound  plots =studentpanel;  

by  Fraction Year;  

class  Crop Block;  

model  pc1adj= Crop Subplot/ dist =lognormal ddfm =kr;  

random  Block Block*Crop;  

lsmeans  Crop/ diff  adjust =tukey lines ;  

run ;  

 

title  'Prin comp 2' ;  

proc  glimmix  data =princomp nobound  plots =studentpanel;  

by  Fraction Year;  

class  Crop Block;  

model  pc2adj= Crop Subplot/ dist =lognormal ddfm =kr;  

random  Block Block*Crop;  

lsmeans  Crop/ diff  adjust =tukey lines ;  

run ;  

title  'Prin comp 2 sc only' ;  

proc  glimmix  data =c nobound  plots =studentpanel;  

by  Year;  

class  Crop Block;  

model  pc2adj= Crop Subplot/ dist =lognormal ddfm =kr;  

random  Block Block*Crop;  

lsmeans  Crop/ diff  adjust =tukey lines ;  

run ;  


